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1. Introduction

Abstract

This research effort is concentrated on the computational neuroscience of early vision. Progress
was made on the following problems: (i) development and simulation of our model for logi-
cal/linear interactions in visual cortical cells, application of it to several problems in visual psy-
chophysics, and inital testing of physiological predictions from it; (ii) extension of ouf model
of endstopped visual cortical neurons into motion and visual area MT; (iii) formal development
of our model of shape, and initial psychophysical experiments inspired from it; and (iv) formal
development of a model for inferring global curves from local (tangent) representations.

1. Introduction

Our second year of research support by AFOSR Grant 89-0260 has been an exciting one.
Real progress has been made on several fronts, especially Computational Neuroscience, Theory,
and Neurophysiology. Several papers have resulted from this research, and we discuss each
project in turn. Since this grant is an interdisciplinary one, we begin with a project in which our
computational modeling has already inspired physiological experiments.

2. Logical/Linear Modeling of Visual Cortical Cells

Our main area of collaboration continues to be the modeling of neurons in the visual cortex,
but now with a concentration on which non-linearities might arise within them, what computa-
tional role these non-linearities could play in functional theories of vision, and how they can be
studied physiologically. Most models of simple cells are linear (e.g., Gabor functions, differences
of Gaussians, etc.), and these are combined (via rectification) into complex cells. Our work
began with a computational motivation-that certain non-linearities are extremely important for
separating nearby, but separate curves-and suggests a drastically different sort of non-linearity
than has previously been investigated. In particular, we have developed a calculus for the logical
combination of local evidence from subunits in which support is accumulated linearly, but incom-
patible evidence enters nonlinearly. This calculus is described in detail in the Technical Report in
Appendix I. It leads to operators that appear linear for one class of stimuli but markedly nonlin-
ear for others - we call these logical-linear operators. They exhibit dual advantages: they are
considerably more stimulus-specific than purely linear operators, while more robust to incidental
stimulus variation than logical operators. The viability of such operators as models of visual cor-
tical neurons (e.g. simple cells) has been examined by comparing simulations of purely linear and
logical-linear models to the responses of cortical neurons. Operators with properties specialised
for spatial contours are examined with stimuli containing vernier offsets, interruptions, and oppo-
site contrast segments. The results are consistent with the well-known "linear" properties (e.g.,
sensitivity to s.f. gratings) while exhibiting the nonlinear behaviour associated with high vernier
sensitivities (Swindale and Cynader, 1989) and strong suppressive effects for opposite contrast
segments (Hammond and MacKay, 1983, 1985). These latter results are described in Appendix
II.



3. Modeling of Endstopping and Curvature

Our computational studies of logical/linear interactions have been so exciting that we have

begun to develop physiological tests derived from them. These involve the development of novel

stimuli in which short segments of opposite contrast bars are superimposed onto longer bars at
preferred orientations, and then extended orthogonally. The end result is a cross composed of

(say) a dark horizontal bar and a white vertical bar on a gray background. Such tests will permit

us to understand significantly more about subunit interactions in receptive fields, and, if our

predictions are substantiated, will force a rather different view of receptive fields in early vision.

The system for generating the relevant stimuli was completed this summer as a result of a

student exchange between McGill University and the University of British Columbia, and initial

testing has now begun under Cynader's direction. Data from the first two experiments is included

in Figs. 1 and 2, and shows the response of the cell to a bar of preferred contrast with an opposite

contrast blob at the center. The horizontal axis is contrast of the blob (same to the right, opposite
to the left of center) vs. response. It is still too early to draw any conclusions from these data,

but we expect to have a lot to report in the 6 month brief progress report.

3. Modeling of Endstopping and Curvature

Our other main area of collaboration has been the modeling of endstopped neurons in the

visual cortex, with an examination of how well they might respond to curved stimuli. Recall

that our model involves a rectified "difference" between the responses of two cells with oriented
receptive fields, one large and the other small. Our model now includes complex cell components,

and a very elaborate simulation of it has been completed. Two new papers, under review for

Visual Neuroscience, are included in Appendices III and IV.

4. Motion and MT

We have begun to extend our theoretical efforts into the motion domain, and to extend our

modeling efforts into area MT. After studying the treatment of discontinuities (Zucker. S.W.,

Iverson, L., and Hummel, R., Coherent compound motion: Corners and non-rigid configurations,

Neural Computation, 1990, 2, 44 - 57), we have begun to address the question of how the visual

system can obtain reliable estimates of the optical flow field and how this information can be

used to obtain coarse estimates of shape. Substantial progress has been made; see Appendix V.

5. Toward a Computational Theory of Shape

We view the key bottleneck to high-level vision to be an analysis of shape, and thus have

begun to address the question of how to decompose a contour into parts from a theoretical

perspective. An early overview of the theory was included in last year's progress report; we now

include recent theoretical results in Appendix VI.
In addition to our theoretical studies, we have also begun to examine psychophysical impli-

cations of the theory. In particular, we have discovered new classes of stimuli in which a single

parameter controls a smooth variation from one shape into another; examples are included in Fig.

3 (can you locate the different "hourglass"?) where neck width is the parameter, and in Fig. 4,

2



6. Summary and Conclusions

(can you locate the "worm" in the field of sausages?) where phase angle is the parameter. Early
data are also included, showing the time to locate the singular shape. Since the theory predicts
which shapes are most similar, the psychophical experiments are based on the tenet that more
similar shapes should take longer to discriminate between. Clearly, although the shape parameters
vary smoothly, the above prediction seems to be verified; there is an abrupt parameter value at
which time increases substantially. Again, more psychophysics needs to be done, and results need
to be quantified. This will be reported on at 6 months.

6. Summary and Conclusions

It should be clear from the above overview that our laboratories have been extremely busy,
with projects in receptive field modeling, endstopping, motion, and shape all underway. There
are in addition a number of other, more theoretical projects as well, such as the use of potential
functions to fill the gulf between local and global visual representations (included as Appendix VII
for completeness). While these projects may seem rather diverse when presented in this fashion,
we invite you to visit our laboratories this year, to sample the activity more personally. This would
give us the opportunity to discuss the larger view of vision that we have been evolving, and which
inspires each of these more technical activities.

7. Supported Personnel

Four graduate students have been supported by this grant: Allan Dobbins (McGill), Benoit
Dubuc (partial support;McGill), Lee Iverson (McGill), and Erica Strumpf (U.B.C.).
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Appendix I

Logical/Linear Operators for Measuring Orientation and Curvature, Technical Report TR-CIM-
90-06, McGill Research Center for Intelligent Machines, Montreal.
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Logical/Linear Operators for Measuring
Orientation and Curvature

Lee A. Iverson Steven W. Zucker

Abstract

We propose a language which unifies aspects of linear operator theory and boolean logic to
define logical/linear (L/L) operators. A family of these operators appropriate for measuring the
low-order differential structure of image curves is developed. These L/L operators are derived by
decomposing a linear model into logical components to ensure that certain logical preconditions
for the existence of an image curve are upheld. The resulting operators allow for coarse
measurement of curvilinear differential structure (orientation and curvature) while successfully
segregating edge- and line-like features. By thus reducing the incidence of false-positive responses,
these operators are a substantial improvement over (thresholded) linear operators which attempt
to resolve the same class of features. Furthermore, these logical decomposition techniques
naturally overcome the need for the ad hoc post-processing linear methods normally rely on.
Finally, evidence is advanced which would indicate that these operators are appropriate models
for end-stopped and non-end-stopped simple cells in primary visual cortex.

Index items: Edge detection, feature extraction, image processing, computer vision, non-linear
operators.
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1. Introduction

There is no shortage of so-called "edge-detectors" and "line-detectors" in computer vision. These
operators are intended to respond to lines and edges in intensity images. Many different designs
have been proposed, based on a range of optimality criteria (e.g [Heuckel, 1971; Canny, 19861)
and, in the end, many of these designs exhibit properties in common with biological vision
systems [Jones and Palmer, 1987]. While this agreement between mathematics and physiology is
encouraging, there is still dissatisfaction with these operators--despite their 'optimal' design, they
do not work sufficiently well to support subsequent analysis. Part of the problem is undoubtedly
the myopic perspective to which such operators are restricted, suggesting the need for more
global interactions [Zucker et al., 19881. But we believe that more can be done locally, and that
another significant part of the problem stems from the types of models on which the operators
are based and the related mathematical tools that have been invoked to derive them. In this
paper we introduce an approach to operator design that differs significantly from the standard
practice, and illustrate how it can be used to design non-linear operators for locating lines and
edges. Finally, relating these non-linearities back to physiology suggests explanations for some
of the characteristics of simple cells left unexplained by linear models.

A standard model used in the design of edge operators involves two components: an ideal
step edge plus additive gaussian noise. This model was proposed in one of the first edge detector
designs [Herskovitz and Binford, 1970], and has continued through the most recent [Canny,
1986; Deriche, 19871. Thus it is no surprise that the solution resembles the product of two
(operator) terms, one to smooth the noise (e.g. a gaussian) and the other to locate the edge (e.g. a
derivative or a step function).

While some of the limitations of the ideal step edge model have been addressed elsewhere
(e.g. [Horn, 1977; Leclerc and Zucker, 1984]), a perhaps more important limitation of the operator
design has not been considered. It is assumed that in viewing a small local region of the image,
only a single section of one edge is being examined. This may be a valid simplification in some
continuous limit, but it is definitely not valid in digital images. Many of the systematic problems
with edge and line detectors occur when structure changes within the local support of the operator
(e.g. several edges or lines coincide). Since these singularities are not dealt with by the noise
component of the model either, the linear operator behaves poorly in their vicinity.

In particular, curve-detecting operators are usually designed to respond if a certain intensity
configuration exists locally (see Figure 1(a)). A signal estimation component of the operator is then
incorporated in the design to filter local noise (Figure 1(b)). However, significant contrast changes
are rarely noise-they are more likely to be the result of a set of distinct objects whose images
project to coincident image positions (Figure 1(c)). An operator which claims to 'detect' or 'select'
a certain class of image features must continue to do so in the presence of such confounding
information.

We propose that image operators should be designed to respond positively to the expected
image structure, and to not respond at all when such structure is not present. Simple linear operators
achieve the first of these goals, but in order to fulfill the second we must incorporate a more
direct verification of the logical preconditions for a given feature into the operator itself. We
accomplish this by decomposing the linear operator into components which correspond to the
logical assertions of the preconditions. When the expected image structure is present, a boolean
combination of these responses produce a linear response, whereas if any of the logical conditions
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Figure 1: A set of potential image curve configurations which must be considered
in the design of operators. An ideal image (a) of a black curve on a white
background; a noisy image (b) of a lower-contrast version of the same curve; an
obscured version (c) of the ideal image. The oval in each image represents the
spatial support of a local operator.

are violated the reponse will be suppressed non-linearly. Because these operators unite elements
from boolean logic and linear operator theory, we refer to them as logical/linear (L/L) operators.

1.1 Image Curves

For consistency we shall adopt the following terminology. Edges are the curves which separate
lighter and darker areas of the image-the perceived discontinuities in the intensity surface; Lines
are those curves which might have been drawn by a pen or pencil (sometimes referred to as bars
in other work [Marr, 1982]). Image curves may be either of these. Two independent properties
describe these image curves: their structures along the tangential and the normal directions.
Tangentially, lines and edges are similar; it is the cross-sectional structure that differentiates
them.

Formally, let I: JR2 - JR be an analytic intensity surface (an image) and a: S = (so, si) -- JR2
a smooth curve parametrized by arc length (see Figure 2). The orientation 0(s) is the direction of
the tangent r(s), a unit vector in the direction of a'(s), and the normal vector n(s) is a unit vector
in the direction a"(s). Define the cross-section 3, of a

.(t) = I(a(s) + tn(s)), s E St E JR. (1)

The three kinds of image curve are then defined:

DEFINITION 1: a isa Positive Contrast Line iff

3c > 0: 0,(0) = max f.(6), s E S. (2a)

DEFINITION 2: ak is a Negative Contrast Line iff

3c > 0: 3.(0) = min 3,(b), a E S. (2b)
-C<6<(
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Figure 2: An image curve a:S =(so, si) with the tangent r(s) and normal

n(s).

DEFINITION 3: a is an Edge* iff

/3'> 0 and 3c > O: I3jO)I max 11 '(6)1, s E S. (2c)

These are the structural preconditions that define image curves: they must hold over their
length (S) and width (W). Linear operators do respond when these conditions are met. However,
they also respond in characteristic situations in which the conditions are clearly not met. These
responses are referred to as false-positives. The current analysis will focus on a mechanism for
avoiding three kinds of false-positives typical of linear operators:

I. Confusion between lines and edges: Lines and edges are differentiated in terms of their cross-
sections. For accurate identification the logical conditions on the cross-section must be
satisfied, and in each case we will show that a linear operator tests them incompletely.

2. Merging or interference between nearby curves: The local continuity of image curves is
important for resolving and separating nearby features. Linear operators interfere with
testing continuity by filling in gaps between nearby features.

3. Smoothing out discontinuities or failing to localize line-endings: The locations of the discontinu-
ities and end-points of a curve are fundamental to higher-level descriptions [Koenderink and
van Doom, 1976; 1982] and [Koenderink, 1984]. Linear operators systematically interfere
with their localization by arbitrary smoothing.

Note that the definition of a line is sign specific, whereas an edge is defined as a locus of local maxima or minima.
There is no conceptual difference between edges that go from light to dark moving towards their centre of curvature
and those of the opposite contrast; they are both edges.
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2. A Logical/Linear Framework for Line Operators

The three qualitatively different kinds of image curves defined in §1.1 imply three distinct sets
of preconditions for the existence of an image curve. As noted previously, the curve description
process must respect these distinctions. Focusing for the moment on the line condition of
Definition 1*, we begin by adopting an oriented, linear line operator similar to the one described
in [Canny, 1986].

Canny adopted the assumption of linearity to facilitate noise sensitivity analysis, and relied
on post-processing to guarantee locality and selectivity of response. He arrived at a line operator
whose cross-section is similar to a gaussian second-derivative, and an edge operator similar to
a gaussian first derivative. Neurophysiologists [Movshon et al., 1978; Schumer and Movshon,
1984; Jones and Palmer, 1987] and psychophysicists [Shapley and Lennie, 1985] have adopted
such linear models to capture many of the functional properties of the early visual system, and
they are relatively easy to analyse mathematically (e.g. using Fourier analysis). These models
are also attractive from a strictly computational point of view because they exhibit most of the
properties required of a measurement operator for image curves. However, they also exhibit the
false-positive responses described above (partially shown in Figures 5 and 6).

To limit these false-positives, we relax the assumption of linearity and test the necessary local
conditions explicitly. This is accomplished by decomposing the operator into components which
measure the conditions to be tested. The resulting operator will appear to be linear as long as all
of these conditions are fulfilled, and thus for many of the standard 'probe stimuli' used by visual
neurophysiologists. We will refer to these operators as logical/linear (L/L) operators.

2.1 Logical/Linear Decomposition

Consider the necessary conditions for a decomposition which will be specific to the design
preconditions but still retain some of the desirable properties of a linear operator.

DEFINITION 4: A non-linear operator is said to be a Logical/Linear operator for a given feature iff

1. It consists of a linear operator which is decomposed into a set of linear component operators whose
sum is identical to the initial operator. These components correspond to measurements of the logical
conditions for the feature's existence.

2. The overall operator response is positive only if the logical conditions for the desired feature are
fulfilled. When this is so, the operator should act identically to the original linear operator.

Thus, given a linear operator which is conditionally optimal (e.g. in terms of noise immunity
and localization) a linear/logical decomposition of this should retain such optimality as long as
the conditions on the component responses hold.

The first condition above suggests that the required decomposition is a partition:

*That this analysis is applicable to the other cases will be shown in 13.1.1
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DEFINITION 5: For a function f: X -+ 1R, a set of functions 1= {r 1, 7r2 ,... } where ri: X - IR is a
partition of f iff for all x E X

Zi(x) = AX). (3)
7riEnl

Many such partitions are clearly possible; we must choose the components II such that they
embody the required logical features.

The combinators to fulfill the second condition of Definition 4 can be derived from a mapping
of the real line to logical values. Assume that positive operator responses represent confirmation
of a logical condition (logical true) and that negative responses represent rejection (logical false).
To derive the numeric*logical mapping, we adopt the principle that all confirming evidence
should be combined if the logical condition holds, and contradictory evidence combined if the
condition fails. This leads to the following set of logical/linear combinators:

DEFINITION 6: The basic set of Logical/Linear Combinators 4, S , absolute value, and 0 (rectification)
are given by

x+y, ifx>OAy>O; x+Y, ifx>OAy>O;

xy x, ifx<OAy>0; A = Y, ifX<0Ay>O; (4a)

x+y, ifx<OAy<0 X+-, if X<OAY<0.

i, , if x > 0; y, ifxO>AO;

= -x, ifx < 0. ( 0, ifx<0. (4b)

Observe that JxJ = x 4 -x and O(x) = -(0 4 x).
Using these combinators, define a generative syntax for L/L expressions.

DEFINITION 7: A Logical/Linear Expression of the real variables v = { vl,. . ., v, } is any expression
e in the language E defined by the following grammar (for the a's being real constants):

E vi £ -.E aE

E -E4E E - E I E
E -- EJ E -- 6 (E)

Consider the universe of vectors U in 1W excluding the axes*

U = {vElR"Ivi#0,1 <i<n} (5)

and the subspaces {e+ = { v E U I e > 0 1.

For real-valued variables, the exclusion of the axes needed to demonstrate logical equivalence is not problematic
because of the singularity of this restriction.



6 2. A LOGICAL/LINEAR FRAMEWORK FOR LINE OPERATORS

THEOREM 1: (LOGICAL) For the language of L/L expressions E, the set of all sets { e }+ and their
complements { e }+ = U - { e }+ (for e E E)form a Boolean algebra with meet 4,join \1 and complement

The following equivalences can be derived directly from Definition 6, for all el, e2 E E:

{-el}+ = {el}+, (6a)

{el4e2}+ = {ell+n{e2}+, (6b)

{el\e2}+ = {el}+U{e2}+. (6c)

It is easy to verify that these sets form a field with the help of the equivalences above (e.g. the
equivalence of 4 and n ensures that if X and Y are members then X 4 Y is also). Furthermore,
these meet, join and complement operators are clearly isomorphic with the standard set-theoretic
n, U and complement. The further observation that 0 and U are the bounds of this field ensure
that this system is a Boolean algebra. ([Sikorski, 1960], p. 3) I

The following equivalences can also be derived directly and are useful.

{ae}+ = {e}+ifa>0 {ae}+ = "e}+ifa<0

{lel}+ = U {(e)}+ = {e}+.

To expose the linearity inherent in these operators, it is necessary to consider the 2" minimal
polynomials

Pi = ql4q24...4qn (7)

where qi = vi if bit i in the binary representation of j is zero, qi = -vi if bit i is one.

THEOREM 2: (LINEAR) Any L/L expression e is linear within the subspace { P }+ of any minimal
polynomial Pi.

Any Boolean polynomial can be equivalently expressed as the join of minimal polynomials or
the lower bound 0 ([Birkhoff and MacLane, 1977], p. 370). Thus { e }+ can be expressed as the \1
of a group of such minimal polynomials (the disjunctive canonical form (DCF) of e). Without loss
of generality, consider a particular such polynomial P. Noting that every element vi in a vector
v E { Pj }+ has a fixed sign, Definition 6 guarantees that 4 is linear on the subspace defined
by { Pi }+ (for fixed sign arguments, the branch chosen in the 4 is fixed). Thus, any minimal
polynomial P is linear on { P }+.

Consider now the DCF of e. We know that each Pi in this DCF is both linear and of constant
sign on { P }+. By the same reasoning as for A above, we can state that I is linear if its arguments
have constant sign, and thus the DCF of e is a linear combination of expressions which are
guaranteed linear on { P )+. Therefore, e is also linear on every { Pi }+. 0

Thus, the proposed combinators satisfy the goals of Definition 4, and have both logical and
linear properties. We will rely on both of these properties in constructing the L/L image operators.
Refer to Appendix A for a more detailed analysis of the implications of these L/L constructs.
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3. Designing LUL Operators for Image Curves

3.1 Testing Lateral Extrema

We begin by localizing the cross-section of a positive contrast line (Definition 1). A necessary
condition for the existence of such a line is a local extremum in intensity (Figure 3 is a display
of typical 1D cross-sections of these intensity phenomena), we will first consider the operator
structure perpendicular to its preferred direction. This specializes to the prior problem of locating
extrema in the cross-section /3.

A local extremum in a one-dimensional signal* 63(x) exists only at those points where

,3'(x) = 0 and /3"(x) # 0. (8)

Estimating the location of such zeroes in the presence of noise is normally achieved by locating
zero-crossings, thus in practice these conditions become

'(x -E) > 0 and)3'(x + e) < 0 and/3"(x) < 0 (9)

An operator which can reliably restrict its responses to only those points where these conditims
hold will only respond to local maxima in a one-dimensional signal.

A set of noise-insensitive linear derivative operators (or 'fuzzy derivatives' [Koenderink and
van Doom, 1987]) are the various derivatives of a Gaussian envelope.

G,(x) = 1 e_7r /2e (10a)

G' (x) = - G,(x), (10b)

G"(x) = , G(x). (10c)

When convolved over a one-dimensional signal these give noise-insensitive estimates of the
derivatives of the signal. These smooth derivatives of the signal are

/3(x) = 0'(x),G.C(x) = /('(),GC(x), (11a)
=(x) 0"(x) G,(x) O(x) G"(x). (11b)

THEOREM 3: /3"(x - c) > 0 and 03"(x + E) < Oand 3(x) < 0 are sufficient conditions for a local
maximum in the signal /3(x).

The identities of (11) show that these conditions are necessary and sufficient for the existence
of a local maximum in /3,(x) = /3(x) * G,(x). The maximum principle for the heat equation
([Protter and Weinberger, 19841, p. 161) implies that convolution by a gaussian cannot introduce
new maxima. Thus the above conditions imply the existence of a maximum in /(x). H

'Assume P(z) is sufficiently differentiable.
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This suggests a practical method for locating maxima in a noisy one-dimensional signal.
Comparing the results of convolutions by derivatives of gaussians will allow us to determine the
points where Theorem 3 holds. The loci of such points will form distinct intervals with widths
< 2c. The parameter a determines the amount of smoothing used to reduce noise-sensitivity.

Using central limits, observe that:

f'(X) = lim 2(f(x + C) - f(X - )). (12)

Thus for the fuzzy derivatives of i, one would expect to find that

1 X ,)) (13)

with the quality of the approximation a function of c. Thus the conditions in Theorem 3 can be
derived from the derivative ,, (x)---a linear combination of two points will give )3,'(x). More
specifically, we adopt the approximation G"(x) (G',(x + c) - G'(x - E))/2c, where E/cr < 1.
Figure 4(b) shows that for E = a/2 this is an excellent approximation.

Thus, convolution by G' allows testing of all three conditions in Theorem 3 simultaneously.
Using the L/L combinators of §2.1 we are now able to define a one-dimensional operator which
has a positive response only within a small range of local maxima.

DEFINITION 8: The One-Dimensional Maxima Operator T, is given by

-.Al (lP4+(X) * 1(X)) 4 (TI; (X) owi(x) (14a)

where

4 -= -G'(x+ c)/ 2 c, (14b)

T+ = G'(x- )/2c. (14c)

We rely on a shorthand notation when describing operators as combinations of linear or
logical/linear components which are evaluated at all x; (14a) can be equivalently expressed as

T, = TI - T+. (15)

Clearly then the key advantage of this IF, operator is that:

LEMMA 4: The response ' ,(i)Iz will be positive only if there is local maximum in 0. within the region
[x - ba, x + ba].

By Theorem 1 we know that ',(i)I > 0 implies that both (16b) and (16a) must also be
positive. Equations 11 then imply that

* )= -/3(+e)/2E (16a)

T+(x)* (x) = 3'(x - )/2c (16b)
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Figure 5: Responses of L/L and linear maxima operators near step. Rectified
responses of the G" operator and divided G' operators are shown for three step
edges with varying slopes of the upper region. It can be seen that the non-linear
operator blocks the unwanted response near a step which is not also a local
maximum (a & b), but that when it is a local maximum (c) it does respond. The
linear G" operator, however, responds in each of these cases, exhibiting consistent
(and erroneous) displacement of the peak response.

Thus a positive response requires that)31 ,(x - c) > 0 and/3'(x + E) < 0, which in turn imply the
presence of a local maximum on/3o between x - E and x + E.0  0

The performance improvement from introducing this non-linearity is considerable. The
linear operator exhibits consistent patterns of false positive responses. The simplest example is
the response near a step (see Figure 5). The linear operator displays a characteristic (false) peak
response when the step is centered over one of the zeroes in the operator profile. The logical/linear
4 operation prevents this error since both G' halves of the operator register derivatives in the
same direction and so do not fulfill the conditions of (9). The L/L operator will respond positively
only in the case that the slope above the step is negative (i.e. only when the transition point is also
a local maximum).

3.1.1 Other Curve Types

The extension of this analysis to the other curve types in §1.1 is straightforward. The most obvious
observation is that the above analysis can be repeated entirely with a simple change of sign so as
to be specific for one-dimensional minima, which correspond to negative contrast lines.

Slightly more complicated is the case for edges, where two related conditions must be
combined (Definition 3). For this case, the following conditions (analogous to equation (8)) must
be verified

,3'(z) > 0 and 3"(z) = 0 and 3"'(x) < 0 (17a)

or

0'(x) > 0 and /3"(z - c) > 0 and 3"(z + c) < 0 and 3"(z) < 0 (17b)

'Observe that although the local maximum in 8i, is guaranteed to fall within this region, the corresponding
maximum in O is not necessarily so restricted. Qualitatively however, we can rely on the observation that the maxima
for a signal will converge on the centroid of that signal under heat propagation (or as we convolve with larger and
larger gaussians). Considering the features of P in isolation then, we can state that the smoothing will cause the location
of the local maximum in P., to shift towards the centroid of the local intensity distribution.
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Mirroring the analysis above, the verificption of these conditions can be realized in an L/L
operator by defining the components

V = G'(x) (18a)

T-j = G"(x - c) (18b)

T = - G'(x + (18c)

and the combination

%F= V- 4 T_ 4LQ (18d)

or, equivalently,

= (( (19)

where T- and T+ are as defined in (14).
Supporting this use of the third derivative as a measure of edge confidence is the observation

that a blurred step edge has vanishing even derivatives and positive odd derivatives. The
description of an edge adopted in (17) is clearly consistent with this observation. It is also more
selective than the 'zero-crossing of a second-derivative,' [Marr and Hildreth, 19801 which is only
one of the logical preconditions which this operator depends on for a response. One can therefore
expect less of a problem of non-edge signals generating edge-like responses with this operator
than with those less specific.

3.2 Testing Tangential Continuity

So far only the cross-sectional (normal) image structure (3,) has been discussed. In order to
extend this result to two-dimensions, we must examine the tangential (curvilinear) structure of
the curves (a). By (2) we must verify the local connectedness of candidate curves. In addition,
the extraction of orientation-specific measures was deemed essential for further processing. In
this section, these problems will be addressed by imposing a further tangential structure on the
operator.

We will follow the same course as for the cross-section-first a linear structure is proposed
which will be decomposed to reveal linear measurement operators for the components of the
logical preconditions. Assume initially that the intensity variation along a curve is everywhere
smooth and corrupted only by additive gaussian noise. This suggests that the response should
be noise-filtered with a linear gaussian operator. Incorporating the prior conditions of §3.1, we
arrive at the first two-dimensional candidate operator:

DEFINITION 9: A preliminary Two-Dimensional Positive Contrast Line Operator T is given by
T = TP- 4 T+ where the lateral components T- and TP+ aregiven by

T -(z, y) = - G',(y + c) G. (x), (20a)

T+(zy) = G',(y - c) G..(x). (20b)

This operator is specific to positive contrast lines with local orientation 0 = 0.



12 3. DESIGNING L/L OPERATORS FOR IMAGE CURVES

1.9! Ia p:I,, r 1Il~dieProfil

I I
:.41

21e~e, inearRespons r.. .. ..

.T .:.:: : . . . . ..

I Split R. .pon 1 .... .... ....

.: i : ........ .. ..... : : :
a 19 20 3e 49 59 69 79

Figure 6: The signal (top) is the parallel cross-section of an image line near the
discontinuous termination of the line (the endline). Note that the linear operator
(middle) exhibits a smooth attenuation of response around the line ending. The
goal (bottom) is an operator whose response attenuates abruptly at or near the
endline discontinuity.
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Figure 7: Schematic of the half-field decomposition and line endings. The elliptic
regions in each figure represent the operator positions as the operator moves
beyond the end of an image line. In (a) the operator is centered on the image
line and the line exists in both half-fields. In (b) the operator is centered on the
end-point and whereas the line only exists in one half-field, the other half-field
contains the end-point. In (c) the operator is centered off the line and the line only
exists in one half-field.
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Note that this operator assumes both local continuity of a, and slow variation in contrast
along the tangential direction. The indiscriminate smoothing of the gaussian G,, provides a post
hoc guarantee of these assumptions by smoothing out variation in the image. It will remove both
orientation and contrast discontinuities (see Figure 6) in the image curve, thus violating the third
criterion of §1.1. The local continuity of the curve must be verified prior to smoothing.

To resolve this, consider the continuity of the curve a (s).

DEFINITION 10: The curve a is C1 Continuous at so iff

lim a(s) = lir a(s) = a(so) (21a)s-.*sO - I--aO+

lim 0(s) = lim 0(s) = 0(s0) (21b)
- So - 8-80+

Thus, if the extensions of a curve on either side of a point at(so) both exist and are similarly
oriented, then the hypothesis of local C1 continuity at so is confirmed.

DEFINITION 11: An operator is End-Line Stable if it responds positively only when centered on a
continuous, connected region of an image curve.

Representing the intensity variation along the curve a as a function of the arc-length I,(s),
an ideal line-ending (or beginning) is a step in intensity at s = 0. End-line stability requires that
the operator's response T(I)I is non-positive for all s < c, and positive for s > E.* Figure 7
demonstrates that this can be achieved by separately considering the behaviour of the curve in
both directions around the operator centre.

We therefore adopt a partition which divides the operator kernel into regions along its length.
Using the step function

E() 1, if X > 0;(2)
0, otherwise.

a partition of F(x) around 0 is given by

F-(x) = F(x)E(-x) F+(x) = F(x)E(x) (23)

Note that F-(x) + F+(x) = F(x) for all x, as required. A smooth (and more stable) partitioning
operator is described in Appendix A.

Applying this partition to the gaussian smoothing kernel, we obtain the two half-field
operators (see Figure 8(a))

G;(z) = Ga(z) -,(-z) G+(z) = G0(z) E(z) (24)

Which are combined to produce the end-line stable d operator.

THEOREM 5: The operator G = + G+ is end-line stable.

*This property must also operate symmetrically at the other end of the curve.
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Figure 8: Splitting of 1D gaussian operator into components. Figure (a) shows the
division about the center described by (24) and the subsequent analysis. Figure (b)
is an example of the extension of this to four regions and the addition of response
stabilizers as described in (27). The centers of division (ci) partition the underlying
area equally. The stabilizers have a' = 1.2 and w = 1/2.

Consider the component responses in the neighbourhood of the step edge IQ(s) = E(s). The
response of G+ to this step is given by

G= (G+ * E)I.

= j(-)cT) dG L (s-r)(r)dr

= ~ - r) G,(s - r) d

{I G(r) dr, if a > 0. (25)
0, iff S_ 0;

The L/L AND of G+ and G; to produce d, requires that both component responses be strictly

positive for a positive response, thus whenever s < 0 around the step described above, the d
response is also zero. It is obvious that the same analysis applies to the symmetric G; component
and the I - E(a) step edge, which describes behaviour around the other end of the line. Thus the
C operator is end-line stable symmetrically around a step edge. U

Observe however that the component responses of the pure partition described above are
unstable with respect to the A combinator. The s < 0 case in equation (25) produces a zero
response, which forces the aggregate response of the 4 to be zero. The proximity of this value
to the singular point of the 4 combinator ensures that the overall response is very sensitive to
perturbations in the component responses. This can be ameliorated by adding a stabilizer to the
partition, which will force the component responses negative where they would otherwise be
simply zero. While many stabilizers will do we adopt the first derivative of a gaussian as perhaps
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the "simplest" smooth operator whose response is entirely negative on one side of a step edge
and entirely positive on the other.

This result can be combined with the approach of [Davis et al., 19761, in which a linear
operator is made noise-insensitive by dividing it into a number of sections along its length and
'detecting' a line only when more than half of the regions give a positive response (this is also
similar to the ANDing of LGN afferents proposed in Marr and Hildreth, 19801). Combining
these two principles requires that the operator be smoothly divided into some even number of
regions around its centre. The partition of (23) can be generalized to n > 2 regions by combining
partitions for a strictly increasing sequence of partition points { ci 11 < i < n } (Si(x) is the
stabilizer described above).

Si(x) = wG',(z- ci) (26)

F(x) (1 - E(x -c)) -Si(x) if i = 1;
Fi(x) = F(x) (E(x - ci-1) - E(x - c1)) + Si-i(x) - Si(z) if I < i < n; (27)

F(x) E(x - Cn- 1) + Sn-l(X) if i = n.

Algebraic combination will verify that these F, partition the function F(x). The separation of a
gaussian into four equal area components with G' stabilizers (which we will refer to as the length
components of the operator) is shown in Figure 8(b).

Consider a gaussian operator thus partitioned into an even n components G' by the introduc-
tion of n - 1 partition points ci.* Require then that all responses in one half-field and any response
in the other half-field be positive.t This condition can be stated as

DEFINITION 12: (LENGTH COMBINATION 1) To ensure that the operator G will only respond
positively when centered on a locally continuous image curve, combine the length components of the
operator as follows = n/1) nc/2+1 n))

((G 4 ... 4 Go 4 (G,'~ I ..\ G"I)
S((G' I ... I Gn,/ 2) 4 (G:/* 4... 4, .) (28)

Note that this combination of the length components is end-line stable (it is just a generalization
of the 2-component case of Theorem 5), and that the noise insensitivity argument of [Davis et al.,
19761 still holds, since the conditions of (28) require that more than half of the G", regions exhibit a
positive response.

Although (28) is useful for verifying end-line stability, a logically more restrictive and simpler
form is used for actually computing the operator responses.

DEFINITION 13: (LENGTH COMBINATION 2)

= G 4 Go+ ((G1 A... 4 G/-) ' (G/ 2+2 4 ... G )) (29)

'By spacing the partition points such that the area under each of the components G, is equal, the contribution of
each component will have the same significance on the final result. For a gaussian operator the partition points to
produce four equal area components should be { -0.674a,0,0.674a ) and for six { -0.967a, -0.431a,0, 0.431a,0.967a).

tThere are a number of choices of logical combination of these responses which guarantee end-line stability,
including the (Davis et al., 19761 condition itself. This one is perhaps the most structurally restrictive while retaining
logical simplicity.
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This formulation simplifies the computation since each component appears exactly once.*
In order to complete the analysis, we unify this tangential continuity combination with the

cross-sectional combination. Each of the responses Gi(I) is an L/L combination of the ith length
components of (20). Thus each length component is a test of the lateral preconditions, and the
tangential combination tests for continuity ensuring end-line stability.

DEFINITION 14: The Logical/Linear Operators it are given by

TP = 'n/2 4 TIn/2+1 4 4(T 4 'P,/2..1 'O 'I/ 2 +2 4 . 4'F'-)) (30)

where
'P = %P- 4 'Pt for Positive Contrast Lines,
v = - 'P -vt for Negative Contrast Lines,
Ti= '4(I'- )('!- +) forEdges.

The length components T-, T+ are obtained by substituting (20) into (27). The T" and T! are obtained
by a similar extension of (18a) to two dimensions and length components.

3.3 Curvature and End-Stopping

Extending the L/L operators to show curvature as well a- orientation selectivity depends on the
work of [Dobbins etal 1987; 1989], which describes a computational model of end-stopping in the
primary visual cortex. The key finding is that end-stopping is related to the measurement of local
curvature, and that models of end-stopped neurons can be derived by taking differences between
oriented linear operators. This model can easily be expressed in the language of L/L operators,
and can incorporate the stable, L/L operators developed above as components.

Given two similarly oriented line operators S (short) and L (long) and weighting factors to
compensate for the differences in their relative areas(ws and wL), the end-stopped operator ES is
given by

ES= (us(S) - wLO(L)) (31)

where O(z) is a half-wave rectification. If the excitatory and inhibitory components are closely
matched in both spatial frequency bandwidth (in the normal direction) and orientation bandwidth,
then the ES operator will have a characteristic maximum response to a curved line with some
non-zero curvaturet (see Figure 9(a)). Since we wish to develop operators with signed curvature
specificity, we will use an L/L line operator as the excitatory component and an L/L length-
partitioned operator with a G' cross-section as the inhibitory component. This component is
laterally offset from center so that its zero axis coincides with that of one lateral component of
the excitatory operator; this places the positive part of the inhibitory component directly under
the center of the excitatory operator, thus guaranteeing maximal inhibition for straight lines. The
odd-symmetry of the inhibition in such an operator ensures that it inhibits response for only one
sign of curvature (see Figure 9(b)), and thus results in an ES line operator which is tuned for both
magnitude and sign of curvature.

*It should be obvious that a condition for reconstruction of a partitioned linear operator is that each component ;n
the decomposition must appear exactly n times in the reconstruction expression.

tln all discussion of curvature values in this paper, curvature is expressed in units of 1/pixels. A curvature of 0.1 is
therefore associated with a circle of radius 10 pixels.
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4. Results

The parameters for three base operators are shown in Table 1. The non-endstopped operator
and the excitatory part of the end-stopped operators are laterally decomposed with aa = ay and
bo = c [see (20)]. In addition the tangential decomposition of these parts into n regions [see (27)]
includes stabilizers with a a' = a,/4, and w = W [see (26)]. The inhibitory part of the end-stopped
operators has an odd-symmetric G' cross-secion laterally displaced by f and is tangentially
decomposed in the same way. The weights W are the weights on each part required to normalize
the response for an ideal stimulus (%100 contrast line of width 2 pixels). The positive curvature
operators are simply 180 degree rotations of the negative curvatures.

Comparing the operator responses to the test image in Figure 11 is revealing. All of the L/L
operators are more specifically tuned than the linear (Fig. 12(a)), and each variation increases
the operator selectivity. The cross-sectional L/L decomposition does indeed serve to localize
responses laterally (Fig. 12(b)), although its strength in suppressing pure edge responses is not
apparent here. The tangential L/L decomposition (Fig. 12(c)) does prevent the indiscriminate
bridging of gaps between nearby curves, and the tendency to run off the ends of curves, two
characteristics of the line- r operator. Finally, the combination of these two decompositions
produces an operator which behaves exactly as it should behave, with accurate localization in all
directions of varia tic .a and stable behaviour in the vicinity of line endings and multiple lines.

Note that the only effect of the L/L decomposition is to eliminate certain of the responses
from the linear operator. These examples show that the L/L have been effective in eliminating all
but the 'best' from among the 'potential' responses. The standard response to this problem with
linear operators (e.g. [Canny, 19861) relies on arbitrary thresholding and further post-processing,
and tends to leave the question of how to choose appropriate thresholds open to the user.

Compare the L/L edge measurements in Figure 18(a) with Canny's operator in Figure 18(b)
(both processes are run at the same scale). Not only is the L/L edge operator as accurate, it makes
explicit a great deal of information which is either unavailable or confounding in the Canny
image. For example, the cross in the upper left is made by two straight lines crossing each other.
This relationship is explicit in the multiple orientations exhibited at or near the crossing, whereas
the Canny responses would indicate that there is, in fact, a smooth transition from vertical to
horizontal in this neighbourhood. In addition, the contour following of the Canny process is not
only a sequential bottleneck in what should be a purely parallel process, but also ensures that
the 'noise' responses appear as well structured as the 'true' responses, thus interfering with the
potential for a later process to effectively discriminate between them. And again we are faced
with the same question as with the line example discussed above-what threshold should one

ES? ES Component a, a, C W
IKI =O .o No 3.0 1.0 1.0 0.175
I, l = 0.1 Yes Excitatory 2.0 1.0 1.0 0.242

Inhibitory 3.0 1.25 1.25 0.316
nl = 0.2 Yes Excitatory 1.25 1.0 1.0 0.245

1 Inhibitory 2.25 1.25 1.25 0.490

Table 1: Parameters for a family of L/L operators
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Figure 10: Response profiles of a family of curvature-selective line operators tuned
for curvatures { -0.2, -0.1,0.0,0.1,0.21. These operators are described in Table 1.

4..

Figure 11: An artificial image used to test the image operators. This is an anti-alia sed
grey-scale image of lines and curves, which represent the range of orientations and
curvatures represented by an operator family and the singularities (line endings
and crossing lines) which generally cause problems for linear operators.
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Figure 13: The effect of varying the L/L p on a low-contrast version of the artificial
test image. (a) Shows the low-contrast image, and (b) the operator responses with
ideal L/L operators p = co, (c) responses for p = 8, and (d) for p = 4.
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Figure 16: L/L responses to a remote sensing image of logging roads.
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use? Of course, the Canny responses could be 'cleaned-up' by making the high threshold larger,
but at what price and on what criteria?

The obvious strengths of the examples shown above are an accurate estimate of the positions,
orientations and curvatures of the image curves. Discontinuities and bifurcations in these curves
are not smoothed over, instead they are represented as multiple tangents at the same point. This
is clearest in the natural images. However, it is clear that these measurements are still somewhat
sensitive to noise and local perturbations, and do not always provide the best estimates of local
curvature.
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5. Discussion

5.1 Biological Implications

A number of observations regarding the relationships between this model and natural visual
systems are possible. In general, there is nothing in the operator structure which is biologically
implausible; in fact, some attempt has been made (see Appendix A) to demonstrate how such a
model might be instantiated in neurophysiological terms. The gross similarities between these
oriented, contrast-tuned operators and cortical simple cells have already been noted. The model of
end-stopping which has been adopted to give these operators curvature-sensitivity was motivated
largely as a biological model. However, a number of more intriguing observations can be made.

Evidence was obtained that the tangential non-linearities proposed may have a neurophys-
iological correlate by [Hammond and MacKay, 19831. In doing single-cell recordings using
illuminated bars as stimuli, they observed that a small opposite contrast region in the midst of a
stimulus was able to inhibit the response of a simple cell much more effectively than would be
predicted by a linear model. The opposite contrast region was, in effect, able to turn the cell off.
This is exactly the behaviour caused by the tangential partitioning of the operator.

More recently, [Bolz et al., 1989] observed facilitatory interactions between similarly oriented
layer 5 and layer 6 pyramidal cells. The layer 5 cells had small receptive fields (RF's) which all lay
within the RF of the layer 6 cell. By inhibiting the activity of one or more of the layer 5 cells, the
length response of the layer 6 cell was reduced by the size of the inhibited RF. They concluded
that the layer 6 cells were "constructed" by an additive summation of the shorter layer 5 cells.
This description corresponds exactly to the model described in this paper.

Potentially problematic is the work of [Schumer and Movshon, 1984], which discredits the
[Marr and Hildreth, 1980] AND-gating model, and can also be extended to the current analysis.
Schumer and Movshon demonstrate that there is no real minimum length of bar stimulus
required to stimulate a simple cell, instead the minimum length required to produce a noticeable
stimulation is inversely related to stimulus contrast. While this is certainly a disproof of the very
simplistic thresholded AND-gating model of Marr and Hildreth, it is not inconsistent with the
model we are proposing. To see this, one must pay close attention to the consequences of the
smooth approximations to the L/L AND and OR operators described in Appendix A. For any
value of p less than oo (the "hard" A), the consequence of the combination of a zero input with a
positive input is to reduce but not eliminate the output (IzI 40 0 = Ijx/2). Thus if all tangential
regions but one are giving zero responses, the effect will be to significantly reduce the response
of the L/L operator. The significant observation is that the "soft" L/L combinators within the
RF summation network are sensitive to changes in contrast-polarity but insensitive to changes in
contrast-magnitude. The analysis of [Schumer and Movshon, 19841 serves only to discredit the use
of contrast-magnitude sensitive logical length summation models, their observations are entirely
consistent with the L/L model.

The reader may have noticed that in Figure 5(c) the response region is offset from the actual
peak of the 1D signal by a small amount. In light of the insistence that the operator respond
only at peaks, this offset may seem problematic until the significance of an observation made in
[Watt and Morgan, 1983; Whitaker and Walker, 19881 is recognized. It was observed that when
a discrimination task involved locating the position of dot clusters or lines with non-constant
intensity cross-section, the locations chosen were best described as the centroids of the intensity
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distributions. The behaviour seen with our model is consistent with this interpretation, as the
centroid of the triangular region is : 56 which is definitely inside the region of positive response.
To see why the model should exhibit this behaviour, notice that the peak of a gaussian convolution
with a positive signal approaches the centroid of the signal as the width of the gaussian increases.
As long as the gaussian is wide with respect to the signal, the peak of its response (as determined
by the peak detection property of the line operator) will be close to the centroid of the intensity
distribution. This relationship should be investigated further.

A number of more specific comparisons, relating our model to neurophysiological and
psychophysical observations were explored in [Dobbins et al., 1990], and will be expanded in
future work.

5.2 Neural Networks

Any system whose behaviour depends on a linear summation of input values can be redesigned
to take advantage of the properties of the L/L combinators. Candidates other than the vision
operators already discussed include many "neural network" algorithms.

Consider, as a typical example, the feed-forward networks described in [Rumelhart et al.,
1986a]. Here and activation function F is applied to a weighted sum of inputs o to generate the
updated activation a!+' for each node i in the network. Thus

a!+' = F((w,~-, (32)

The weighted sum in this expression is just a one-dimensional discrete convolution over the
previous output values o'. Therefore, an L/L decomposition of this summing network can lead
to performance improvements analogous to those in our image operators.

We have already applied L/L decomposition to a related relaxation labelling system [Hummel
and Zucker, 1983; Iverson, 19881 for exposing patterns of consistency in our image operator
responses (i.e. to suppress noise and impose a more specific model of curve continuity). In
this particular system, the addition of L/L decompositions of the support network allows for
successful and stable convergence of the relaxation in as few as two or three iterations. The details
of this application will be discussed in a companion paper.

5.3 Conclusions

One of the major problems with linear operator approaches to detecting image curves is their false-
positive responses to uncharacteristic stimuli. After outlining the necessary logical conditions
for the existence of an image curve, we developed an operator decomposition which allows for
the efficient testing of these conditions, and the elimination of these false-positive responses. To
achieve this, it was essential to consider both the cross-section of the intensity image and the
low-order differential structure of the curve itself.

The model appears consistent with both psychophysical and neurophysiological data and
indicates non-linear interactions between simple cells in the inter-blob regions of layers 4, 5 and 6
of striate cortex. The model also suggests functional roles for dendro-dendritic interactions and
shunting inhibitions in the dendritic trees of these cells.

More generally, we have introduced a flexible language for describing a useful class of
non-linearities in operators. This language of logical/linear operators serves to combine existing
linear models with logical descriptions of structure to produce operators which have guaranteed
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stable behaviour. This class of operators represents a new approach to the problem of translating
linear measures into logical categories. Thus they may prove essential in the eventual solution of
a wide variety of classification problems, and in the principled and realistic modelling of neural
networks.
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A. Logical/Linear Combinators

As was described in §2.1 a set of conditionally linear logical combinators have been developed.
The logical structure of these combinators is based on the principle that the sign of a signal
(positive or negative) can be associated with a truth value (true and false, respectively). If some
logical condition on the inputs is found to hold then the output will be a linear combination of
the inputs.

The examples outlined are the L/L combinators analogous to logical and and or, and the
rectifying operators IJx and O(x). The notation adopted reflects the combination of linear and
logical principles in these operators:

* logical/linear AND of x and Y is x 4 y;

* logical/linear OR of x and y is x I y.
The definitions and proofs in §2 clarify the relationship between these operators and both
logical and linear principles. The symmetry and associativity of these operators are also easy to
demonstrate.

A useful formulation of these operators is expressed in terms of the step function a(x):
(1, if x>O (33

a(=) 0, otherwise. 
(33)

This function is a choice operator pivoting around zero, and as such it can be used to directly
define the L/L combinators above. Consider that the operators can be defined as:

x41, = (x unless fx > OAy <0})+(y unless {y >OAx < 0}) (34a)

xlly = (x unlessx<OAy >0})+(yunless{yOAx>0}) (34b)

O(x) = x when {x > 0} (34c)

jxj = (x when {x > 0}) + (-x when f{x < 0}) (34d)

Verify that these are equivalent to the algebraic expressions

x4 Y = x (1 - o(x)oa(- Y)) + Y (1 -0(3I) a(- X)) (35a)

z Y = X (1 - ar(y) o.(-x)) + Y 1- 0,(.T) 0,(-Y)) (35b)

I l = XZO(X) - X(-x) (35c)

O(X) = za(x) (35d)

These are derived based on the principle of selecting those cases in which either x or y contributes
linearly to the output.

In order to derive an analytic form for these operators we adopt a smooth approximation to

= 0, if z <0; (36)
e- 1 /, otherwise.

*The logistic' sigmoid function of lRumelhart etal., 1986b is another option for this, but the fact that the function
chosen is only non-singular (i.e. 0 < op(z) < 1) on z E [ -l/p, l/p] means that the "hard" logic of J2.1 still applics for
values outside of this region.



31

(a)x 4p, p=O (b)x4pY, p=2 ()z4P, p=8 (d) x4Py, p=oo

(e)z pp, p=O (fxOpy, p=2 (g) x I, , p=8 (h) x y, p= oo

Figure 19: Graphs of L/L combinators varying p. (a), (b), (c), and (d) show x 4P y,
(e), (f), (g), and (h) show x 1" y.

f(1/2 + px)f(1/2 + px) + f(1/2 - px)

This function is differentiable and

l(X) = oun a,(x). (38)

Furthermore this approximation makes clear the relationship between the linear sum and the L/L
operators since ao(x) = 1/2. In this degenerate case, both of the operators simplify to a linear
combination

X40Y = X (1 - o(x)oo(-y)) + 3I(1- 0,(3) ao(-x)) (39a)
= 3/4 (x + y)

= 3 / 4 (x +)

Thus, the approximating functions 4p and Ip form a continuous deformation from a linear
combination to the absolute L/L operation as p goes from 0 to oo.

A local network model of a A circuit is shown in Figure 20. This model is based on a simple
principle, the shunt switch. Such a switch acts as a resistive element for its input signal with the
resistance controlled by the control input. When the control input is negative, then the shunt is
on and has a very low resistance; it passes its input through effectively unchanged. When the
control is positive the shunt is off and the resistance is very high; the output is effectively zero.
For simplicity, the shunts pictured allow multiple control inputs, all of which must be positive
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Shunt

Figure 20: Network implementation of A using a switching element. The shunts
(small circles) operate by passing their input signal unchanged unless all of the
control inputs are positive, in which case the output of the shunt is zero.*

for the shunt to turn off. This mechanism is similar to the functional characteristics of a relay
or transistor. In neurophysiological terms, it could be related to shunting inhibition [Fatt and
Katz, 1953; Rail, 1964] in the dendritic tree of a single neuron. The controls in this case would be
realized as axo-dendritic or dendro-dendritic synapses.
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Appendix 11

A Logical/Li1near Model of Cortical Subunit Interactions.
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Appendix III

Endstopped Visual Cortical Neurons I: Analysis of a Quasi-Linear Model.
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Abstract

A model of endstopped simple neurons is mathematically analysed and studied quantitatively

In simulation to examine its ability to provide robust local curvature estimates. The model arises

from differences in the response of cells with small and large receptive fields (RFs). Conceptually.

the small RF cell forms the discharge region and the large RF cell forms the inhibitory end zones

The combination of the component responses is nonlinear although under some circumstances

an endstopped model instance with simple components is linear The analysis of this simplified

case provides insight into -the behaviour of the significantly more nonlinear versions of the model

To study robustness, the model is examined in simulation with curves of varying radius, width

and orientation. The sensitivity to perturbations of these curve parameters depends critically on

the choice of model parameters. If the central discharge region and end zones are matched in

spatial frequency response, then the form of curvature response is invariant along this dimension.

Similarly, matching the components in orientation-tuning leads to stable curvature response when

the curve orientation is perturbed. The model predicts that the response of endstopped neurons

in curvature-arc length space is dominated by change in arc length for short arcs and by change

in curvature for long arcs.
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and orientation. The sensitivity to perturbations of these curve parameters depends critically on

the choice of model parameters. If the central discharge region and end zones are matched in

spatial frequency response, then the form of curvature response is invariant along this dimension.

Similarly, matching the components in orientation-tuning leads to stable curvature response when

the curve orientation is perturbed. The model predicts that the response of endstopped neurons

in curvature-arc length space is dominated by change in arc length for short arcs and by change

in curvature for long arcs.
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1 Introduction

1. Introduction

Endstopped neurons in the visual cortex are defined by their length-selectivity, but also differ

from nonendstopped neurons in their response to curved stimuli Hubel and Wiesel (1965) first

identified hypercomplex or endstopped cells and reported that they respond well to stimuli less

than some length, to corners, and to line terminations. They also provocatively suggested that

endstopped cells should respond well to highly curved stimuli and might in a sense measure

curvature. We have provided evidence that endstopped neurons are curvature-selective when

evaluated with ideal, smooth curves, and have developed a model of endstopped simple (ES)

cells which exhibits this property (Dobbins et al., 1987). The evidence and model support a

functional division in which endstopped neurons respond to high curvature and endfree neurons

to low curvature, each at their preferred orientation.

In this paper our specific motivations are as follows. First, to quantitatively examine the

response characteristics of the quasilinear ES model (linear stages followed by rectification) and

its linear approximation. The latter can be analysed in a rather complete way. Second, to examine

the range of stimulus conditions under which curvature response is qualitatively invariant, and

to examine curvature resolution by measuring quantitative response variation. Such results are

indispensable to the question of the sufficiency or shortcomings of local estimates in the curve

inference process. In a companion paper complex components are introduced and endstopped

model instances with simple and complex components are compared.

The models considered can be summarized by a single functional form (see Eq. 1), in which

the response arises from the "difference" of the responses of cells with short and long receptive

fields. This characteristic can be implemented by a local circuit within an orientation column

(McGuire et al., 1984; Bolz & Gilbert, 1986), and may be the simplest generic mechanism for

building complex properties from simpler ones. In the endstopped simple (ES) model linear simple

cell components are combined nonlinearly, while subsequent models contain one or more nonlinear



2 Methods

(complex) components (Dobbins et al., 1990). How the choice of parameter values - the sizes.

gains and receptive field fine structure - affects the behaviour of the model is evaluated in each

case.

Figure 1 About Here

Figure 1 illustrates the principal components of the model. The mapping from the input to

the output of a neuron is separated into two parts: a spatial integration followed by a rectifying

function. To evaluate the behaviour of the model, we systematically examine subsets of it, for

example by eliminating or simplifying the nonlinearities. By this method one can see how each

element contributes to the response specificity of the model.

2. Methods

Simulations were developed and run on a Symbolics 3670 LISP computer. Most of the

experiments reported here examine the response of the model to curved arcs of different radii

with varied curve position, orientation or width. Line and curve stimuli were either binary-valued

curves with a jagged appearance, or gray-level curves (8 bit) with a smooth appearance created

using a supersampling technique. In this technique the intensity value of a pixel is determined

by considering the fraction of coverage of the pixel (treated as an 8 by 8 grid) by a continuous

curve. Line stimuli were chosen to be less than or equal to the excitatory region in width, and

(unless stated otherwise) were centered upor, it.

The model is formulated in terms of integration of continuous variables over a continous

domain. The simulations, in contrast, involve summation of finite precision variables over a

discrete domain. Simple cell RFs were represented as 2-D arrays of double precision floating point

numbers. The array elements were the samples of the continuous RF lying on a rectangular grid.

2



3 The Endstopped Modei

Fine sampling was employed to minimize the difference in numerical results between rectangular.

sampled and continuous RFs. That is, RFs were represented by large arrays e.g. 60 by 60

elements. Representations of Gaussians were truncated at ±2e-

The simulation experiments were the following:

(1) Length Tuning. Response to an optimally-oriented and positioned light bar is computed.

as length is added symmetrically to each end of the bar.

(2) Orientation Tuning. To evaluate the orientation response of the model, a simulated light

bar is positioned over the central RF and response is computed at each orientation as the bar is

rotated in equal steps about its center.

(3) Position Tuning. The response to bars or curves of the preferred orientation is computed

as a function of position on the RF.

(4) VVidth Tuning. The width of the bar or curve is systematically varied.

(5) Curvature Tuning. Curvature response is evaluated by computing the response to curved

arcs of varying arc length and radius arranged so that the mid-point of the arc falls on the central

RF and oriented in such a way that the tangent at mid-arc corresponds to the preferred orientation

of the RF of the cell. Except where stated otherwise the curves were semi-circular and were either

thin lines or edges. In some experiments the curvature response is computed for curves rotated

through some angle, or shifted in position on the RF.

3. The Endstopped Model

The essential character of the endstopped model is that its response arises from the "dif.

ference" in response of cells with receptive fields (RFs) of similar position and orientation but

different size. The small (S) and large (L) component cells and endstopped simple cell (ES)

are indicated with superscripts while subscripts (e, o) refer to even or odd RF symmetries. Each

convolution result (RS, RL; k' * I) is passed through a function (6(.)) which models the

3



4 Analysis of the Endstopped Model

inability of neurons to represent negative values on a low spontaneous firing baseline. Scalar

constants cS and cL are introduced to balance the responses between - and "/ Therefore the

response of the endstopped cell is given by:

R ES = o(cS .o(RS) - d" • o(R L )). (1)

The activation (or positive part) function 6 will be used to darify the relationship between certain

linear and nonlinear models. In this and previous papers (Dobbins et al., 1987; 1989) simple half

wave rectification is employed for this purpose while in the accompanying paper a more general

functicn is employed (Dobbins et al., 1990).

3.1 Simple Receptive Field Components

We model the response of simple neurons as spatial integrations of the RF. against the image

and represent the RFs by Gabor functions (see Appendix 1). This class of model has been shown

to provide a good fit to the spatial RFs of simple cells (Jones & Palmer, 1987), although other

models also could have served as well (Parker & Hawken, 1988). The RF parameter values

are constrained to be compatible with the evidence about striate cortical simple cells. Since

simple RFs have a small number of parallel zones - one or two to five (Heggelund, 1986),

and the neurons do not respond to diffuse flashes, both the number of regions and the DC

response component are limited. Few simple cells are exactly odd or even symmetric in their RF

organization, but many are approximately so (Heggelund, 1986; Jones & Palmer, 1987). In the

simulations described here only even (e) or odd (o) kernels are employed (denoted by 4 and

4c, respectively). Integration is followed by the rectification function (0) described in the last

section. The issues that arise in specifying the RF parameters are treated in subsequent sections.

4



4 Analysis of the Endstopped Model

4. Analysis of the Endstopped Model

We begin the analysis of the (non-linear) endstopped model (1) with a preliminary examination

of linear RF models of endfree and endstopped cells. Although the linear model is only partly

successful in capturing the characteristics of endstopped cells, it provides the foundation from

which more realistic models will be developed.

4.1 Unear RF Models

The linear RFs are modeled by Gabor functions (see Appendix 1). Low modulation frequencies

result in RFs like those shown schematically in Figure 2. The spectrum of their Fourier transform

is also shown (a pair of Gaussians shifted by the modulation frequency with aspect ratios that are

the inverse of those in the spatial domain). The simple RFs of Figure 2a (k, (even), k (odd))

are modulated by a sinusoid of frequency uo in the x direction. Introducing cosine modulation

in the y direction (by vo) yields a first approximation to endstopped RFs (Figure 2b, 2c). These

are denoted (kee,koe) where the second subscript indicates the additional cosine modulation.

Figure 2 About Here

As elaborated in Appendix 1, the location of the envelopes in the frequency plane in Figure 2

provides an indication of preferred orientation in response to long lines and gratings.

Figure 3 About Here

Let k denote a simple RF kernel and A'itsFouricrtrans form

$



4 Analysis of the Endstopped Model

k ~ y ) -, ,~u ) .

The response to long lines can be found by integrating along the RF length.

L k(x,y)dy t K(u.O). (2)

or equivalently by examining the values of K on the u' axis. Length response as a function of

vo is shown in Figure 3a. Observe (in Figure 2b) that as vo increases the Gaussian envelope

K (the Fourier transform of the spatial RF) moves off the it axis and therefore the response

to long lines decreases. Figure 3b expresses the asymptotic end inhibition as a function of the

spatial wavelength of modulation (Ay = 27r/vo). This curve, which represents the strength of

end inhibition for a one parameter family of linear RFs, resembles the data on the dis'ribution of

population end inhibition as a function of discharge zone length reported for cat striate cortex

(Fig. 8a in Kato et al., 1978). They found that only cells with short excitatory RFs have strong

endstopping, and that long RFs invariably possess weak or no end inhibition.

Figure 4 About Here

There are three principal points concerning the orientation response of the RF types shown

in Figure 2c: (i) the orientation bandwidth for short stimuli has increased; (ii) the preferred

orientation for long lines is shifted toward diagonal orientations; and (iii) the orientation-tuning

curve for long lines has bifurcated. Figure 4a shows that for a sequence of RFs (as in Figure

2b) the orientation response curves bifurcate as %0 increases. Figure 4b shows the orientation

response for short and long lines for a ke instance. The response to long lines is bimodal while

the response to short lines is single peaked. Measured with stimuli short enough to elicit a
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4 Analysis of the Endstopped Mode

unimodal response curve, one finds that the breadth of response increases with increasing v'

That is, orientation response broadens with increased endstopping. Kato et al. (1978) report

that orientation tuning is broader in endstopped simple and complex cells than in their respective

nonendstopped counterparts.

Figure 5 About Here

Having shown that linear "endstopped" RFs exhibit different preferred orientations for long

and short stimuli we consider the response to angled stimuli. By examining the symmetries o(

the RFs in Figure 2c it follows that they will also respond to chevrons. The kf RF has four fold

symmetry and will respond well to any of the four chevrons that can be formed from the X' of

preferred orientations. In contrast, the koe RF responds well only to a chevron of one contrast

and orientation, and its mirror in contrast and orientation. The preferred orientation of these RFs

can be approximated as:

0 = ±tan-,() = cot-1( ) (3)

Therefore the angular step (AO) of the preferred chevron can be determined from the preferred

orientation. In the simulation of Figure 4a the orientation peak is shifted approximately 22 degrees

from vertical (Eq. 7 predicts 21.8 degrees), implying the best chevrons have interior angles of

either 44 or 136 degrees. Although a chevron represents a step in orientation and an impulse in

curvature, over some local neighbourhood of arc length As, it has the same average curvature

(W) as some smooth curve:

V f82 Jds (4)
Ss2 -411 1
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The arc length (As) in the chevron curvature approximation is calculated froin A,/2 and

Ay/2 which are approximations to local maxima of an even-symmetric RF. One can calculate the

peak curvature response for ke by finding the radius of the circle passing through three points

(the center (0,0). and (A,/2,±A/2)):

4A(

For smooth curves and chevrons wide enough to fill most of the central excitatory RF, and of the

same average curvature, the linear RF models respond equally well, while for thinner curves there

is less response to chevrons. The reason is that the smooth curve with its continuous tangent

provides more excitatory drive than the corner.

Figure 5 illustrates the curvature response of the same sequence of RFs. The first two (vo =

0, 0.3) respond best to straight (or low curvature) curves while the latter two (110 = 0.6, 0.9)

exhibit a bandpass curvature response. From (5) the predicted peak radius of curvature for t, =

0.6 is 12.1 and for vo = 0.9 is 6.3. From *Figure 5a the peaks occur at approximately 10 and 5

respectively.

The advantage of this class of model is dearly its simplicity - at a particular RF scale (o',,oj,)

varying one parameter systematically varies the asymptotic end inhibition and the preferred curva-

ture. However such models have two major disadvantages. First, from a computational perspec-

tive, since the highly endstopped instances respond well to high curvatures at one orientation and

low curvatures at another, to checkerboard patterns, and to stimuli in the endzones, in isolation

they can provide little information about curvature. Second, RFs with precisely these properties

- bimodal orientation-tuning for long lines and excitation flanking inhibition in the endzones

- have not been reported. The second of these should perhaps not be overemphasized since

investigators would ordinarily take pains to avoid the endzones while assessing orientation tuning.

Given these shortcomings, it is curious that the linear model explains certain observations. These

a
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will be taken up in the discussion. The utility of the linear model derives from the fact that

it can be completely analysed, and that nonlinear endstopped models reduce either exactly or

approximately to a linear model in some range of operation.

4.2 A Non-Linear Endstopped Model with Simple Components

If curvature-selective responses are more than an artifact of the responses of endstopped neu-

rons then it is necessary that the response to curves exhibit stability as other stimulus parameters

change. There are at least two possible senses of stability. A strong sense is curvature-response

being invariant with changes of other curve parameters. A weaker sense of stability allows quali-

tative change in curvature response provided it occurs at a response level significantly diminished

compared to the unperturbed stimulus. To be concrete, an isotropic Laplacian of Gaussian RF

exhibits curvature response that is invariant with respect to curve orientation, whereas a differ-

ence of oriented operators yields orientation-dependent curvature response. In this section we

examine how the choice of model parameters affects the stability of curvature-response for model

instances in which both the small and large RFs model cortical simple cells (ES model).

4.2.1 The Relationship Between the Linear and ES Models

Consider how the positive part function, 0 connects linear RF models, like those just analysed.

to the ES model (1) with linear components. If the integrations for the small and large components

are in the linear range (c • rs > / • r', c • rs > 0), then the combination of the two is linear.

for certain choices of the parameter values the es model then closely resembles a single linear

rf model (as depicted in figure 2c). in particular, if the small (s) and large (I) simple cells have

identical spatial frequency (uo) and phase (e,o) of modulation, then the spatial zeros of their

rfs correspond and the difference of the two has the same center frequency (but not necessarily

bandwidth). for those stimuli which bias the response of both components into the linear range,

9



4 Analysis of the Endstopped Model

the es model dosely approximates the linear gabor model. that is. for appropriate choice of c

and c, a difference of small and large even or odd simple rfs:

C -,s -k c1 i4 k k (6a)

cs. k0 -c t ko kof. (66)

is approximated by linear endstopped rfs (ke,, ko,). therefore, over some range of conditions,

such an es model will exhibit the same assets and liabilites as the linear models examined in the

last section. viewing the linear endstopped rfs as a difference of nonendstopped rfs of different

length illuminates the basis of curvature-selectivity from a different perspective, having chosen

u0 = U/, eq. a6 implies that s has greater orientation bandwidth than I (bwt > buf). the

difference of the two, 6bwo, is precisely what appears in the bifurcated orientation curves of

figure 4. hence, since s is implicit in the rf scale, the average curvature (eq. 4) to which the rf

is tuned can be obtained from the orientation curve by dividing the distance between the peaks

by the circular arc length. the breadth of curvature tuning can also be approximated from the

orientation response by measuring the distance between the proximal and distal half height points

of the bifurcated response. for es instances composed in this way the orientation-tuning to long

lines predicts the curvature-response.

at a particular scale the nonendstopped cells respond best to low curvatures while endstopped

cells respond best to high curvatures. across scales, however, a more general statement is.that

endstopped cells respond to arcs that span large orientation changes and nonendstopped cells to

arcs that span small orientation changes.

4.2.2 Varying Parameters Determining Spatial Frequency and Orientation Response

In order for endstopped neurons to-provide reliable information about the rate of curve

10
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bending, the discharge zones and the endzones must satisfy certain constraints These issues are

explored for neurons with linear components in this section.

Constraints between parameters derive from the Uncertainty Principle for 2D linear filters

(Daugman, 1985). The Uncertainty Principle in ID holds that the product of the square root of

the variance of the modulus of a (normalised) signal in one domain (Ax = 1 *ar(-*(x).-k(x))jl/ 2 )

and the transform domain (Au = [Var(K-(u). K(u))]11/ 2 ) is bounded below by a definite value.

In this case the signal is the RF kernel. In two dimensions, two ID relations hold as well as a 2D

relation:

AxAu > 1 (7a)
4,

1
AyAv > (7b)

47r

AXAUAYAV> 1 (7c)

16r
2

Evidently, although the parameters of linear filters can be chosen in various ways, these

relations specify limits on the characteristics that can be achieved simultaneously in both domains.

Daugman (1985) analyses tradeoffs between orientation and frequency bandwidths which turns

out to be significant in determining the robustness of curvature-response. It can be shown that

RFs of different size cannot be simultaneously matched in spatial frequency (peak and bandwidth)

and orientation bandwidth. Given the RF sizes (AyL > AYS) and the relation determining

orientation bandwidth (BWO = Az/Ay (A6)) this result is evident.

Figure 6 About Here

11
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Figure 6 shows different combinations of small and large RFs in the space and spatial frequency

domain. In Figure 6a the Gaussian envelopes of the small and large simple RFs differ in length

but not width and both are modulated by a sinusoid of the same frequency ii,. Therefore in the

frequency domain they differ only in the ' dimension. In Figure 6b the Gaussian envelopes have

the same aspect ratios and hence differ in width as well as length. Accordingly, in the frequency

domain the envelopes differ in extent in both u and v, dimensions. Figure 6c is like 10a except

that the larger spatial envelope is modulated by a lower frequency than the smaller. Therefore,

the smaller (spatial) envelope is shifted farther from the origin in the frequency domain. Figure

6d shows the, case in which the small and large RFs differ significantly in envelope aspect ratio

and hence in spatial frequency bandwidth (BlVu).

Figure 7 About Here

Figure 7a and 7b show the curvature-response of an ES instance (composed as in Figure

6a) to curved lines of different radius and width at the optimal position and orientation. When

plotted on logarithmic axes it is dear that the shape of the response does not change over a

range of line widths (and hence spatial frequencies). Figure 7c shows the response to curved

lines of varying curvature and orientation. The response function changes both in magnitude and

shape with orientation. Away from the optimal orientation the strongest responses are to low

curvatures - stimuli to which there are no responses at the optimal orientation. The shorter

excitatory RF responds over a broader range of orientations to low curvature stimuli leading to

the strong response to oblique lines. As indicated previously (6) under these conditions an equal

spatial frequency ES instance approximates one of the linear RF instances. Hence long stimuli

will produce bimodal orientation-tuning curves.

An alternative approach is to choose the parameters so that the orientation bandwidth is the

12
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Figure 8 About Here

same for the two components. Equation A6 implies that a match is accomplished by satisfying:

,AS 6 1.L

(8)

and Figure 6c depicts the situation graphically. Figure 7d and 7e shows the curvature response

as a function of line width. Because of the difference in component spatial frequency tuning the

shape of the curve is variable. Figure 7f shows the response for curves-of different orientations

with respect to the RF. Although the response curves vary somewhat in shape, they decline in

magnitude with increasing orientation deviation and response does not recover strongly at low

curvatures.

Instead of matching the components in spatial frequency (uo and Bit',) or in orientation

(BW9) it is possible to effect a tradeoff between the two. The problem is how to choose the

components so as to maximize the invariance of the curvature response with changes of curve

orientation and width. Figure 7g,h,i show the results of an intermediate choice. Appendix 1 gives

an example of a functional that one could minimize in choosing a tradeoff. However this functional

is not unique and different functionals will lead to somewhat different parameter choices.

Odd-symmetric ES examples are selective for the sign of curvature as well as its magnitude

(Dobbins et al., 1987; 1989). Figure 8 shows the response of an ES instance in which both

components are odd-symmetric, but in which the parameter values otherwise equal those in

Figure 7g,hi. Essentially only the magnitude of the curvature response varies with curve width

(Figure 8a), while the response recovery to low curvatures at oblique orientations is not that

strong (Figure 8b). To the opposite sign of curvature there is almost no response at the optimal

orientation, while for low curvature diagonals the response approaches the level of response shown
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in Figure 8b. Overall the response is the least variable observed.

The Uncertainty Principle imposes a limitation on the ability to match filter characteristics:

the length difference which gives rise to curvature-selectivity implies a difference in Av for the

two components. It is certain that for RFs as in Figure 6a (with matched u,, and Bl4 u) that

the orientation tuning of the small RF cannot be increased to match the large one. With linear

components the position, orientation, and curvature tuning cannot be decoupled.

In passing we note that a corresponding difference in the length-response of simple endstopped

cells would be expected depending on whether or not the components are matched in spatial

frequency. The implication is that in one case asymptotic end inhibition is independent of the

width or spatial frequency of the stimulus used and in the other case it is not. An experiment to

determine whether end-inhibition varies with bar width is also of interest with respect to the issue

of whether endstopped and nonendstopped cells exist along a continuum (Schiller et al., 1976)

or divide into distinct dasses (Kato et al., 1978). That question has hinged on the distribution

of asymptotic end-inhibition observed.

Summary The linearity of the components of the ES model implies that the Uncertainty

Principle establishes a limit on the joint space-spatial frequency behaviowu of the model. Con-

structing endstopped neurons from simple cells with different parameter choices leads to different

tradeoffs in the stability of curvature-tuning.

4.2.3 Varying Gain and Size

In this section we consider how variation in the relative gains and sizes of the components

affects curvature response. This is necessarily preliminary to any effort aimed at designing a

family of mechanisms sensitive to different ranges of curvature.

Since endstopping is usually defined in terms of length-tuning, a brief description of the effect

of varying gain and component size on length response is given. Increasing the gain of the small
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RF neuron has the following effects: response magnitude increases optimal length increases

(toward the short RF length), and the asymptotic response to long bars increases (decreased end

inhibition). Similarly, increasing the length of the small RF shifts the peak response to greater

length.

Figure 9 About Here

Figure 9 shows the curvature response of the model as the size and gain of the small compo-

nent is varied. The left column shows the responses in terms of radius of curvature and the right

column plots the log of the response against the log of the radius. The latter has the advantage

that the curvature and radius of curvature are now related by a left-right reversal. Looking down

the left column in Figure 9 it can be seen that the peak radius increases as the small component

increases in size. Similarly, increasing the gain of the small component increases the peak radius

as well as response magnitude. However, the change in peak location is smaller than is-obtained

in length-tuning measurements. Hence, over a limited range, increasing the size or gain of the

small RF has a similar effect.

The right column of Figure 9 highlights the differences. Changing the small component gain

changes the rate of rolloff on the low curvature side whereas changing size changes the response

rolloff rate at high curvatures. The effect of changing relative gain is much more dramatic than

changing relative size and principally determines the breadth of curvature-tuning. For example,

if one increases the gain of the small RF, the curvature response width at half height increases

and the end inhibition as measured by length-tuning decreases. All but one of the examples in

Figure 9 have half height curvature bandwidths of three to five octaves.

We have also employed a smooth, saturating nonlinearity with variable gain and spontaneous

activity in place of simple half wave rectification (Dobbins et al., 1990). If that function em-
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ployed, small values of the spontaneous activity parameter can narrow the curvature bandwidth

by reducing the response at very high curvatures. On the other hand, saturation biasing can sig-

nificantly broaden the curvature bandwidth. Response is most stable when saturation is matched

for contrast in the two components. Similarly, for cells which exhibit contrast gain control the

minimum change in the shape of endstopped curvature-response occurs when the change in gain

co-varies in the excitatory and inhibitory components of the endstopped neuron. Mismatch in

contrast gain adaptation would produce changes in curvature selectivity as shown for changing

gain in Figure 9. Changes in responsivity or noise that are common to both small and large

components do not adversely affect ES model performance, but uncorrelated changes will cause

perturbation in curvature-tuning curves.

The examples shown in Figure 9 have components matched in spatial frequency response

and the results were for curves of only one width. If the components are not matched in spatial

frequency response then the way in which curvature-response varies with relative gain depends

on the curve width.

Summary Both the relative gain and the relative size of the endstopped model components

affect the shape of the curvature response. Relative gain is more significant and determines the

curvature bandwidth whereas the relative size is more important in determining the peak of the

response curve.

4.3 Curvature as Orientation Change

Consider a curve described locally as curvature parametrized by arc length (A- = oc(s)). The

orientation range (AO) spanned by a section of arc is the integral of the curvature with respect to

the arc. The distinction in the curvature preferences between endstopped and endfree cells can

be described in terms of orientation range. For arcs at least as long as the maximal RF dimension

endstopped neurons prefer large orientation ranges (e.g. AO > 450) and nonendstopped cells
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small ones. The orientation range distinction is scale-independent and hence more general than

the low/high curvature distinction.

Figure 10 About Here

Figure 10 shows the results of experiments with an endstopped simple model cell in which

both curvature and arc length are systematically varied. Figure 10a shows the response surface

in radius of curvature-arc length space. Figure 10b plots level sets (iso-response contours) in the

same coordinates. For short arcs, the response gradient is in the direction of changing arc length.

while for long arcs the gradient is in the curvature direction.
/

5. Discussion

5.1 The Range of Curvature Selective Cells

Wilson (1985) has argued that the effective orientation range employed in human curvature

discrimination is primarily determined by the tuning of the underlying orientation selective mech-

anisms. If endstopped cells are concerned with representing the local bending of arcs, we now

ask how many (with distinctly different stimulus selectivity) are required.

There are two factors to consider: (i). the range of curvature that is represented by single

RFs, and (ii). the curvature resolution (inverse of bandwidth) attained by the RFs. There are

two constraints affecting the range of representation by RFs. The first is a maximum curvature

constraint which is ultimately determined by optical resolution and photoreceptor density. Then

the maximum curvature to which the system is sensitive is determined by the smallest orientation

selective units. In the primate, a substantial fraction of foveal cortical units is less than 10 arc
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minutes in length and the smallest are less than 5 arc minutes (Parker & Hawken. 1988). In cat

striate cortex, the neurons with the shortest RFs are almost invariably endstopped (Kato et al.,

1978), and since there is substantial or total overlap between RF center and endzones (Orban

et al., 1979b), the excitatory RF length of endstopped cells is systematically underestimated

(Dobbins et al., 1989). Experiments with the ES model show that the peak of the length

response curve may be as little as 50-60 percent of the length of the short excitatory RF. In

addition, we have conducted other simulations to determine the relationship between the peaks

of the length and radius of curvature tuning curves. The results indicate that the peak radius of

curvature varies between the length-tuning peak (typically 0.6 - 0.75 of the small RF length) to

an upper value equal to the small RF length. Therefore, if one takes a value of 5 arc minutes

as the smallest measured length, assuming the measured length is 0.6 - 0.75 the length of the

discharge region, and using the just-described relation between length and radius of curvature

one obtains an estimate of peak radius of 5 - 9 arc minutes for the smallest units.

Parker and Hawken (1988) estimated RF lengths indirectly from spatial frequency and orien-

tation bandwidth measurements in monkey. Two thirds of the RFs are within a factor of five in

length although the full range was about a decade (less than 5 to greater than 40 arc minutes).

The data of Kato et al. (1978) and of Gilbert (1977) also indicate that the range of RF lengths

at a particular eccentricity in cat Area 17 is no more than a decade. However since these data in

fact represent a range of eccentricites of a few central degrees, and there is greater variability in

length measurements than for many other RF parameters, it is possible that the range is rather

less.

There is also a kind of minimum curvature constraint. Although it is possible to choose RF

parameters to obtain endstopped RFs responsive to low orientation ranges (but still curvature

bandpass), a proportionally denser sampling of orientation is implied, making it more economical

to use endfree (curvature lowpass) neurons to represent low orientation ranges.
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5 Discussion

Curvature resolution is not primarily determined by the curvature bandwidth to a particular

idealized stimulus but rather by the variation in bandwidth over the class of perturbed curves.

Proceeding naively, by combining adjacent elements in a series of four octave-spaced RFs one

obtains three endstopped cells. The four cells span a factor of eight in length. The endstopped

cells composed in this way have constant log bandwidth and cover a factor of four in their

curvature tuning peaks. First note that the model predicts half height curvature bandwidths of

3-5 octaves. This breadth suggests that octave RF spacing represents significant ,ersampling

of curvature. In other words, such sampling does not partition curvature into orthogonal classes.

Second, the shortest and longest RFs (at any retinal eccentricity) are very unlikely to be tuned to

the same spatial frequency, implying that, for a given eccentricity and preferred spatial frequency

there do not exist endstopped cells tuned for curvatures differing by as much as a factor of four.

The qualification to be made is that we are referring to cells that are strongly endstopped; cells

with weak end inhibition extend the range of peak curvatures but have such broad curvature-

tuning that it is unlikely that they play a significant role.

To summarize, examination of the range of RFs available for synthesizing endstopped neurons

suggests that the range of peak curvatures represented by endstopped cells is not much greater

than a factor of two (for a given preferred spatial frequency). Within this range there may be

cells with a range of curvature-tuning characteristics. However, these would not appear to fall

neatly into orthogonal curvature c;asses.

5.2 Linear and Quasi-Linear Endstopped Models

The endstopped simple model exhibits the right qualitative length, orientation and curvature

response. As illustrated in Figure 3b plotting Ay (fraction of the total RF that is excitatory)

against end inhibition leads to a distribution very much like the empirical one found in Kato et

al. (1978). If the spatial extent of the afferent pool that may contribute to RF synthesis is
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5 Discussion

fixed, then the linear model predicts that endstopped cells have broader orientation tuning than

their nonendstopped counterparts, and that the degree of endstopping is intimately linked to the

length of the excitatory RF. Both these results are in accord with the experimental findings of

Kato et al. (1978).

Although the linear and quasi-linear ES models exhibit the right qualitative behaviour they can

be discounted as plausible endstopped neuron models on empirical grounds: the phase-specific

nature of the endzones. Tanaka et al. (1987) have examined endstopped cells in cat Area 19,

finding that the endzones are tuned to the same spatial frequency as the RF center but have

broader bandwidth. If the endzones were synthesized from one simple cell this would imply that

the endzones are narrower than the center. This is incompatible with the evidence of Orban

et al. (1979b) on endzone width in cat striate endstopped neurons. In addition, Tanaka et al.

(1987) found that the endzones of the Area 19 cells were phase-insensitive implying a complex-like

character as first suggested by Hubel and Wiesel (1965). In the accompanying paper we explore

models of endstopped neurons with complex components. In addition to nonlinear components

one can imagine nonlinear combination of the components. For example one could treat the end

inhibition as divisive rather than subtractive. This AND-NOT combination (Koch et al., 1983)

can be interpreted as an assertion of the form: the contour can be approximated by a line segment

of length L but not of length 2L. Employing divisive rather than subtractive inhibition changes

the shape of the length and curvature response curves somewhat but not the basic character of

the model.

Both the linear and quasi-linear ES models respond to chevrons, crosses and so forth in

addition to smooth curves. The RF symmetries imply that these models respond to two differ-

ently oriented chevrons and hence smooth curves at orthogonal orientations and with distinct

curvatures. This undesirable artifact is partly a consequence of the position or phase-specificity

of end inhibition. If, instead, inhibition is position-independent in the end zones as the evidence
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5 Discussion

suggests then the response to curves and chevrons rotated 90 degrees with respect to the center

is abolished.

All of the versions of the endstopped model (in this and the accompanying paper) respond

to curves, none responds exclusively to curves, and none provides a precise estimate of curvature.

Therefore the endstopped simple model is not a 'curvature detector. Nevertheless, as shall be

discussed in the following paper the curvature-selective response of endstopped neurons can be

exploited as a first stage in cur e inference. The degree of success of the linear and quasi-

linear models is attributable, we believe, to more realistic non-linear models resembling the linear

model in some range of operation. This can arise from nonlinear components or more nonlinear

interactions between them or both (Iverson and Zucker, 1990: Dobbins et al. 1990).
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7. Appendix 1

7. Appendix 1.

The formulation of Gabor (1946) was introduced to vision by Marcelja (1980) and Daugman

(1980) and is used throughout the paper in representing linear RF components because of its

simplicity and convenience in both spatial and spatial frequency domains. Recall that Gabor

functions are the product of Gaussians with sinusoids. Therefore in general a 2D Gabor RF can

be described as:

1 -1 ______ -X') 2(x -z2

k(x,y) = 2[Urz1 +PxlZ2+ aX2 [(uo-l +)+("Ox 2+3)] (Al)

where (zo1,zo2) gives the center of the Gaussian envelope, o,,12 and r2 2 the variances and

p the covariance of the Gaussian. The complex modulation frequencies are given by uo and vo

and the phases by a and 0. Employing a local coordinate system (X. y) centered on the RF and

oriented so that the modulation is in the x direction, we consider the following Gabor functions:

1 z1)2 +(JY) 2 ] cos,,Yr (A2a)
ke(z, y; ozo;to) = 2 ecos( 0.)

ko(z, y; o',oy; Uo) = 2w o e= 0ay CL sin(uox) (A2b)

which have purely even and odd phase modulation although the evidence indicates that simple

cortical RFs exist with all intermediate phases as well (Heggelund, 1986). We assume that

oy _ a, and that the modulation frequencies are low. In particular it, is low enough that the

number of lobes in the RF is less than or equal to five (4o! < 2.5A,). The spectrum of the

Fourier transform is also shown and is a pair of Gaussians shifted by the modulation frequency

U, with aspect ratios that are the inverse of those in the spatial domain.

Allowing cosine modulation in the y-direction one obtains something like endstopped RFs:
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7 Appendix 1

kee (X. y; z. ay; Uo, to) = ke (r. y) cos(vo'i) (A3a)

koe(X-y;x,4y;uoro) = ko(r. Y)cos("r.Y) (A3b)

Note that a trigonometric identity allows one to treat each of these doubly-modulated RFs as

sums of RFs with 1D modulation. Since there is no evidence of more than three zones along the

RF length the spatial wavelength of modulation (Ay = 2 /c'o) is constrained to be less than or

equal to the RF length (Ay _< 4ay). In Figure 2b v, is increased from 0 and the spatial envelope

takes on the shape shown. The spectrum of the Fourier transform is represented schematically on

the right. It is worth noting that spatial frequency has usually had a one dimensional interpretation

in neurophysiology and psychophysics. For rectilinear stimuli, this is satisfactory, but disks and

rings have a radial organization of spatial frequency (with Bessel kernel; Bracewell, 1965). In

referring to spatial frequency bandwidth (BWu) we shall mean the bandwidth in the direction of

the modulation vector (Uo).

The Fourier transform of a long thin vertical bar has a spectrum concentrated along the

u-axis. A form which is rotated in space has its Fourier transform rotated through the same

angle. In symbols:

f(-,y) = f(r,O) * F(u,v) = F(p.,). (A4)

where (r,0) and (p,-I) are polar representations in the space and spatial frequency domains,

respectively. Rotating the line through a:

f(,0 + a) F(p, - + o) (AS)

Therefore the Fourier transform of a rotated line is the rotated transform of the original line. A
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7 Appendix 1

vertical sinusoidal grating transforms to a pair of impulses on the u axis and rotating the grating

sweeps out a circle of radius U in the u-v plane. The preferred orientation of an RF is normal

to the direction .f the modulation vector, hence the location of the envelopes in the spatial

frequency plane in Figure 2a and 2c provides an indication of preferred orientation in response to

lines and gratings. The orientation bandwidth of a simple cell viewed in the frequency domain

can be treated as:

BIV9 = tan 1 (Av/uo) (A6)

where At, is the variance of the RF in v (Kulikowski et al, 1982), or, approximated graphically by

the arcs from the origin to the RF envelope as shown in Figures 6a and 6c. This relation can be

expressed equally well in terms of the corresponding spatial domain variables (1/A, and 1/Ay).

Having obtained a measure of orientation bandwidth we derive a measure of the joint spatial

frequency-orientation match of two simple RFs of different size. The degree of match in spatial

frequency of the simple components can be represented by the overlap of the two Gaussian kernels

in the frequency domain. Therefore the component matches vary with the ratio:

IAvS/ S _ AvL/uLI (A)
f f KS(u,,,) . L(u t- d,,d,.

where the integration is taken over the plane (2 is reduced to R2 for equal phase RFs) and we

desire small values as the component parameters uoS, uoL, Au S , and AUL vary.
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8 Figure Legends

8. Figure Legends

Figure 1. a. The endstopped model is constructed from the convergence of excitation from

a short RF cell 3nd inhibition from a long RF cell.

Figure 2. a. Even and odd (ke,ko) Gabor representations of simple RFs in space (left) and

their Fourier spectrum (right). The ellipses have Gaussian weighting in both domains. b. The

transition between the RFs in a. and c. as t' is increased from 0 in both domains. The arcs
/

bounding the envelopes in the frequency domain provide a graphical indication of the orientation

bandwidth in response to very long lines. Similarly, the migration of the envelopes away from

the u axis is related to the change in asymptotic end inhibition measured with long lines (or

spatial DC response). c. Simulating endstopped RFs with additional cosine modulation in the

y-direction (kee,koe). Note that in response to long bars, the preferred orientation has shifted

and the orientation bandwidth has increased.

Figure 3. a. Length-response curves for the k/ e Gabor RF for different values of vo (0.

0.3, 0.6, 0.9). (RF parameters: Size: 21 pixels, Aspect Ratio: a/oa. = 2, uo = 0.15) As

the inhibitory end zones (modulation frequency) increase, the asymptotic inhibition goes from 0

to 100 percent. b. The asymptotic end inhibition as a function of the relative lengths of the

excitatory and inhibitory zones. The abscissa is the wavelength of the modulating sinusoid (A)

normalized by the RF length (S).

Figure 4. a. The orientation response for kee instances with the same parameter values as the

previous figure. The response curve bifurcates as v. increases. b. Orientation response for short

(solid curve) and long bars (dotted curve) of width 3 pixels for the instance with vo = 0.06. The

short bars equal the excitatory center in length and the long bars the total RF length. Although

unimodal, the response to short bars has broader bandwidth than the for the nonendstopped

instance in response to long bars.

Figure 5. a. The response to appropriately oriented semi-circular arcs for the same set of
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8 Figure Legends

parameter values as previously. For low values of vo the curves appear nonendstopped but become

increasingly endstopped as vo increases. b. The data are replotted on log-log axes. The curves

differ in their characteristics both on the low and high curvature side. Plotted this way curvature

and radius of curvature are merely related by a sign change.

Figure 6. The RFs and Fourier spectra of different pairs of vertically-oriented simple Gabor

RFs that differ in length (after Daugman, 1985). a. Same bandwidth in i (BIVU) and center

frequency (uo) b. Equal envelope aspect ratio (AR) and uo. c. Equal BI'V and orientation

bandwidth (BW 9 ). d. Equal center frequency uo.

Figure 7. The curvature response as a function of curve width and orientation for three

ES instances. The left and middle columns show response to curves of different width plotted

on linear and log axes, respectively. The line widths are 1, 3, 5, and 7 pixels (solid, dotted,

dashed, long-dashed). The right column shows the response to curves of width 3 pixels at

orientations from optimal to 25 degrees from optimal in steps of 5 degrees. In all cases the

radius of curvature varies from 0 to 200 in steps of 10. the top row (a., b., c.) corresponds to

Figure 6a (parameters: Size-S/L: 35/61, Aspect Ratio (AR) S/L:1.15/2.0, center frequency u0 -

S/L:0.05/0.05, and gains cS/cL:1.8/1.0) designed so that the components are matched in center

spatial frequency (u,) and bandwidth (BI'Vu). a. The response as a function of curve width.

b. On log-log axes the curves appear as vertically translated copies. c. There is strong response

to high curvatures at the vertical orientation and low curvatures at oblique orientations. The

middle row (d., e., f.) corresponds to Figure 6c (paramfeters: Size-S/L: 35/61, AR-S/L:1.15/2.0,

uo-S/L:0.08/0.0 46, cS/cL:1.9/1.0) designed so that the components are matched in spatial

frequency (BWu) and orientation (BWO) bandwidth. d., e. The response as a function of curve

width is variable and there is no response to the widest curve. f. The response narrows and

decays as the curve orientation moves away from vertical. There is no response to low curvature

at oblique orientations. The bottom row (g., h., i.) represents one choice of tradeoffs between the
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8 Figure Legends

matching in spatial frequency and in orientation (parameters: Size-S/L: 35/61, AR-S/L'1.15/2.0.

uo-S/L:0.06/0.046, cS/cL:1,85/1.0). g., h. Comparing with the panels above it is dear that

the form of the response is less sensitive to curve width than in d and e but more so than in a

and b. i. The reverse is true for sensitivity to curve orientation.

Figure 8. The curvature response as a function of curve width and orientation for an odd-

symmetric ES instance. The left and middle graphs show response to curves of different width

plotted on linear and log axes, respectively. The line widths are 1, 3. 5, and 7 pixels (solid,

dotted, dashed, long-dashed). The right graph shows the response to curves of width 3 pixels

at orientations from optimal to 25 degrees from optimal in steps of 5 degrees. In all cases the

radius of curvature varies from 0 to 200 in steps of 10.

Figure 9. The curvature response of three ES instances as the gain of the small component

is changed. The right column re-expresses the data of the left column on log-log (base 2) plots.

In each case 51 curves of radius from 4 to 204 pixels and width 3 pixels were used. In a., b.,

and c. the small components are of length 21, 31 and 41 pixels, respectively, with AR 1.0, 1.4,

and 1.6. In each case, for both small and large components Uo = 0.05. The large component is

always the same - 61 pixels long with AR = 2.0, and cL = 1.0. a. For the 21 pixel RF cS takes

values 2.5, 3.0 and 3.7 (solid, dotted, dashed) for the three curves shown. b. a. For the 31 pixel

RF cS takes values 1.8, 2.1, and 2.4 for the three curves shown. c. For the 41 pixel RF cS takes

values 1.3, 1.6 and 2.0 for the three curves shown. In each case the relative gain determines the

rolloff on the right (low curvature) side. The relative size determines the rolloff on the left (high

curvature) side and the peak position. The locus of the peak radius is approximately equal to

the length of the small RF.

Figure 10. The response of an endstopped simple instance to curves in which arc length and

radius of curvature are systematically varied. The parameters are as in Figure 11a,b,c. a. Three

dimensional response plot. The termination of the surface from the left foreground shows the
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8 Figure Legends

curvature response curve while a view from the right shows the (rever!*ed) length-tuning curve

b. Level sets of the response surface. For short arc lengths there is low curvature selectivity and

high length selectivity, while for long arcs the reverse is true. This is evident by examining the

direction of the response gradient (normal to the level set contours)
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7 Supported Personnel

Appendix IV

Endstopped Visual Cortical Neurons I1: Experiments with a Complex, Nonlinear Model.
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Endstopped Visual Cortical Neurons II.
Experiments with a Complex, Nonlinear

Model.

Allan Dobbins Steven W. Zucker Max S Cynader

Abstract

A model of complex endstopped neurons is developed and analysed. The endstopped neuron

model combines an excitatory center which may be simple or complex and complex inhibitory end

zones. Complex cells are classified as standard or special according to positional. length-summing

and orientation-tuning criteria. The simulations reported here suggest there may be two factors

contributing to the special complex behaviour: (i) subadditive synaptic interactions among inputs.

and (ii) the presence of endstopping. The curvature selectivity of the endstopped complex model

is evaluated with curved stimuli that are varied in orientation and width to examine the robustness

of response to stimulus perturbation. The results depend strongly on how the parameters of the

constituents of the model cell are chosen. In some cases one obtains curvature-selective responses

very similar to those obtained with the endstopped simple neuron model. In some other cases the

behaviour is more complicated. Finally, we consider the range of curvature spanned by endstopped

cells and discuss representational issues in curve description.
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Introductio-

1. Introduction

Descriptions of visual objects are related to descriptions of their surfaces and bounding curves

The processes underlying these share important features. In neither case can continuity, inearit)

smoothness, or freedom from occlusions be blithely assumed Instead one needs informatior

from the visual image concerning whether and where these are true To estimate the structure of

curves one must answer: Is it a curve (a continuous line or edge): Is it straight or curved; Does

it curve smoothly, and, if so, how rapidly? It follows that a necessary prerequisite for a theory

of curve description is determination of which of these questions can be addressed locally, and

which require interactions across distance. The present study maintains a narrower focus, wherein

we continue exploring the hypothesis that endstopping is a property related to the estimation of

curvature, and evaluate models of endstopped neurons and .their success in estimating curvature

Dreher (1972) established that the discharge region of endstopped cells may be either simple

or complex, but a variety of evidence implies that the endzones have a complex character (Hubel

and Wiesel, 1965; Orban et al., 1979a, 1979b; Tanaka et al.. 1987). Therefore in this paper

we extend the endstopped simple model (Dobbins et al., 1987: 1989; 1990) to include complex

components. The complex model parameters can be chosen to resemble a cell of either the

standard or special complex type. Length, orientation, and positional sensitivities of the complex

cell model are computed to establish a baseline of comparison for simple cells and the experimental

data. Simulations are then performed in which the curvature-selectivity of the endstopped complex

model is evaluated.

2. Methods

Simulations were developed and run on a Symbolics 3670 LISP computer. Most of the

experiments reported here examine the response of the model to curved arcs of different radii

with varied curve position, orientation or width. A complete description of the simulation methods



Te Endstooed Mode

Figure 2 About Here

is contained in Dobbins et al. (1990)

3. The Endstopped Model

Figure I About Here

The essential character of the endstopped model is that its response arises from the "dif-

ference" in response of cells with receptive fields (RFs) of similar position and orientation but

different size. The small (S) and large (L) cells can be simple or complex (Figure 1). Notation:

superscripts (S, L, ES) refer to particular cells while subscripts (e o) refer to even or odd RF

symmetries. Each convolution result (RS, RL; Ri =k' * 1) is passed through a function (0(.))

which models the inability of neurons to represent negative values on a low spontaneous firing

baseline. Scalar constants c-5 and cL are introduced to balance the responses between S and L

Therefore the response of the endstopped cell is given by:

RES = *(c S 
. O(RS) - cL  (R)). (1)

The activation (or positive part) function 0 will be used to clarify the relationship between

certain linear and nonlinear models. Previously, simple half wave rectification was employed for

this purpose (Dobbins et al., 1987; 1989).

3.1 The Activation Function
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The Endstopped Mode

Observe that 0 depends on two parameters F and ., where f determines the form of the

nonlinearity and p controls the contrast sensitivity. 0 contains a saturating nonlinearity to reflect

the dynamic range limits of cortical neurons and F models spontaneous activity which determines

the degree of rectification (or, equivalently, the amount of compression of negative values). We

have modelled 0 as:

O(R;p. r) = (2)
1+1/F -r

where R is the convolution result, and F ( (0. 1] (see Appendix 1 for further details concerning

0). Observe in Figure 2, that for small r the output has a saturating half wave rectified character

while for r = 1 there is no rectification and the range of output is equal for positive and negative

R. In addition, the width of the linear range is roughly independent of F Therefore, apart from

quadratic distortion at low R and saturation at high R, 0 with small r approaches simple half

wave rectification ((.)):

lim O(R; p,r Jr ) {X. ifx > 0(3

r-.o 10. otherwise. (3)

Varying the relative values of F and € in relation to the input magnitude allows selection of

a variety of different input.output properties. In much of what follows it is assumed that each

of the model components has length summation, however we shall also consider special complex

cells which do not exhibit length summation and which are often endstopped.

3.2 The Receptive Field Components

The endstopped cell discharge region and endzones may be either simple or complex, and this

section reviews the models of simple and complex cells that are employed. The parameters of

0 are selected to produce orientation-tuning and length summation behaviour resembling either

standard or special complex cells.
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The Endstopped Mode

3.2.1 Simple Cells

We model the response of simple neurons as spatial convolutions against the image and

represent the RFs by Gabor functions (see Appendix 1 Dobbins et al 1990) This class of

model has been shown to provide a good fit to the spatial RFs of simple cells (Jones & Palmer

1987), although other models also could have served as vell (Parker & Hawken. 1988).

3.2.2 Complex Cells

In their hierarchical model of the construction of visual cortical cell types. Hubel and Wiesel

(1965) postulated that hypercomplex cells are synthesized from complex cells which in turn are

composed of simple components. There is a variety of evidence incompatible with this scheme

in its simplest form, such as complex cells being driven monosynaptically from the LGN (Hoff-

mann & Stone, 1971; Singer et al., 1975), and endstopped (hypercomplex) cells appearing in

both simple and complex varieties (Dreher, 1972; Kato et al., 1978). Although cortical neurons

have significantly narrower spatial freqency bandwidths than LGN cells, many common exper-

imental assays would fail to distinguish complex cells with staggered simple components from

cells receiving a suitable array of LGN afferents. Complex cells behave spatially as if they receive

input from simple cells with slightly shifted positions. Movshon et al.. (1978) described double

bar experiments in complex cells in which the sign and magnitude of interaction depended -on

both the spatial and temporal intervals. They argued that spatial frequency response is deter-

mined by RF subunits, the interaction of which determine the directional and velocity preference.

Heggelund (1981) modeled the synthesis of complex cells from overlapping ON and OFF center

LGN afferents contributing both excitation and inhibition. In contrast, Spitzer and Hochstein

(1985) treat complex cell behaviour as arising from sums of half wave rectified simple cells. Their

model, which consisted of one spatial dimension (across the RF) and time, successfully predicts

the temporal response of many simple and complex cells to sinusoidal grating stimuli.

4
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Standard Complex

Beginning with the original description of complex neurons (Hubel & Wiesel. 1962), inves-

tigators have described their diversity in orientation tuning and length summation Our present

goal leads us to concentrate on the spatial aspect of response dependency in classical complex

cells (those with ON and OFF responses everywhere in the RF). and not to attempt to portray

the features accounting for speed and directional preference. Therefore we build complex-like

cells from laterally displaced simple cells, rectifying and giving an individual weighting to each.

The complex cell response is given by:

n

= Ci . o(R') (4)
:= 1

where Ri is the response of the ith simple cell and c its weight. For simplicity the simple

cell components are equally spaced (shifted less than 1/4 the spatial wavelength) and Gaussian

weighted with position. In a purely spatial model there is no distinction between responses to

stimuli being turned on and off. Notice that for a particular line stimulus, only one of a pair

of even symmetric simple (or LGN) components with equal and opposite RFs would respond.

Therefore, the spatial response due to a pair of half wave rectified components of the same

position but with opposite contrast sign is equivalent to the full wave rectified response of either

of the pair. For computational expedience, in the simulations we use only ON center simple cells

with full wave rectification.

Figure 3 About Here

Figure 3 shows line weighting functions and orientation tuning for a conplex model instance

and one of its simple components. The complex cell responds over a broader area, although
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this is reduced if the simple components are half wave rather full wave rectified There is no

corresponding effect on orientation tuning. Note that the simple and complex orientation curves

differ insignificantly in tuning breadth.

The orientation width of the complex model instance is approximately the same as its simple

components (Figure 3c,d). This is not in agreement with the population averages reported in

many investigations (see Orban (1984), for a review). Among the possible explanations are: (i'.

complex cells are not synthesized from simple cells, (ii) the simple cells that compose complex cells

have broader tuning than the simple population as a whole. (iii) other components of complex

cells broaden the orientation-tuning, (iv) subunit interaction broadens orientation-tuning, (v) the

simple cell components have randomly perturbed orientation preferences. broadening the complex

cell orientation tuning (suggestion due to C.L. Baker, personal communication), (vi) complex cells

exhibit higher firing rates than simple cells, and perhaps operate closer to saturation, (vii) the

complex population is less homogeneous than the simple population. In particular, special complex

cells have considerably broader orientation tuning than simple or standard complex cells which

differ only slightly (Hammond & Pomfrett, 1989). There is a paucity of evidence on most of

these points, but the last two hypotheses can be examined with the activation function 0(.) in

the simulations. By setting the gain and saturation appropriately one can broaden orientation

tuning, reduce length summation and examine the consequences for the endstopped model.

Special Complex

We briefly describe the characteristics of special complex neurons (Gilbert, 1977), and illus-

trate how the complex cell model can produce them. Special complex cells are characterized

by lack of length summation and broad orientation tuning. In addition, they often have high

spontaneous activity and are frequently endstopped (Gilbert, 1977; Schwark et al., 1986; Weyand

et al., 1986; Hammond and Pomfrett (1989)). A complex model cell appears to be of the special

type when the gain is chosen so that the activation function saturates. The saturation is actually
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subadditivity or occlusion,

( 7 .r2 ) < V(.r) (- "2

and can be biophysically modeled as subadditive synaptic interaction (Rall et al.. 1967, Rall.

1970). Schwark et al., (1986) have shown that the supragranular layers are a necessary input

to the special but not the standard complex cells of Layer 5 in the cat Therefore subadditive

interactions could occur on the apical dendrite in Layers 2-3, or via the supragranular projection

to Layer 5.

Figure 4 About Here

Figure 4 shows length and orientation tuning curves for the complex cell of the previous

section when biased to exhibit subadditivity. The length tuning responses saturate at lengths

considerably less than the RF length (61 pixels) and the orientation tuning is broadened.

4. Endstopped Model with Simple and Complex Components

Figure 5 About Here

4.1 Simple Center and Complex Endzones

We begin by examining the response of an endstopped cell in which the small cell is simple

and the large inhibitory cell is complex. Figure 5 shows the curvature-response of such a cell
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4 Endstopped Mode! with Simple and Compley Components

as a function of the width of the curve and curve orientation In Figure 5a it can be seen that

there is some variation in response with the width of the curve and in Figure 5b it can be seen

that there is some response recovery for low curvatures at oblique orientations However it is less

than half the response to high curvatures at the optimal orientation The present example has

excitatory and inhibitory components matched in center frequency. but achieves robustness with

orientation perturbation with increased orientation bandwidth in the inhibitory complex cell. In

particular, the envelope aspect ratio and modulation frequency reduce the inhibitory sidebands

thus broadening the orientation bandwidth and DC response. The same effect could have been

achieved by using the activation function to bias the inhibitory cell to look special complex-like.

Figure 6 About Here

4.2 Complex Center and Complex Endzones

Figure 6 depicts the curvature response of a cell in which both small and large components

are complex. Perturbing curve orientation (Figure 6b) leads to somewhat greater oblique low

curvature recovery than for the cell in the previous figure. Figure 6d repeats the experiment

for a curved edge. There is no response to curves at orientation deviations of greater than 10

degrees while the 0 and 10 degree curves are virtually identical. In Figure 6c a curved line and a

curved edge are tested at all positions across the RF. This cell gives strong curvature-dependent

responses to both curved edges and lines, although not in a position-independent way. In both

cases the maximum response is displaced from the RF center, but the edge response has odd

symmetry being maximal when the edge has not intruded as far as the RF center, while the line

response is roughly even about the RF center. If one measures the curvature-tuning curve at

different RF positions one obtains different results in both the magnitude and shape of the curve.

8



4 Endstopped Model with Simple and Complex Components

The model is purely spatial while real neurons have temporal dynamics We conjecture that the

response to a curve swept across the RF in the preferred direction would largely integrate across

the variation in the curve line weighting function.

Figure 7 illustrates the length and orientation responses of the same endstopped complex

cell. Note that the peak of the length-tuning curve is significantly less than the length of the

short excitatory RF (22 compared to 35 pixels). If one evaluates the orientation response with

a bar of this length one obtains a curve with width at half height of 61 degrees. In contrast.

evaluated with a bar of length 35 pixels the width at half height is 50 degrees. and for a long

bar one obtains the bifurcated curve shown. Thus the broader orientation tuning of endstopped

cells than their nonendstopped counterparts (Kato et al., 1978) is a natural consequence of the

fact that for endstopped cells the measurements are made at shorter lengths relative to the

underlying discharge region (see also Dobbins et al., 1989). Similarly, the endzones reduce the

apparent length summation and create a certain amount of position-independent response along

the length of the discharge region i.e. the optima! bar can be moved up or down a substantial

amount in the RF and still elicit a strong response. This is also a common property among the

cells of V4, many of which have both antagonistic surrounds and length-dependent suppression

within the discharge region (Desimone & Schein, 1987).

We have seen that endstopping can broaden measured orientation tuning and reduce ap-

parent length summation. Since special complex cells are frequently endstopped (Gilbert, 1977;

Schwark et al, 1986; Weyand et al., 1986; Hammond and Pomfrett 1989). this raises the ques-

tion of whether special complex cells really form a distinct category. It may be that endstopping

is partly responsible for conferring their apparently distinctive position, length and orientation

properties (see section on Endstopping Circuitry also). All of the just-cited studies have noted

the high spontaneous activity of special complex cells, so in Figure 7c,d the activation function is

introduced (with moderate spontaneous activity, F = 0.5) to the output of the small component.
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Figure 7c shows the broadened orientation-tuning that results (width at half height 100 degrees)

Figure 7d shows the curvature response with orientation perturbation The oblique low curvature

recovery is substantial. Saturation was not a factor in these results

.Figure 7 About Here

Employing both complex components and the activation function significantly'increases the

dimensionality of the parameter space and the range of behaviour of the endstopped model.

It also reduces the density of good parameter choices for stable curvature selective response

We found that we could obtain very unusual length, orientation and line weighting functions

when combining complex cells to form endstopped cells. For example in one instance the model

cell produced a strong bifurcated orientation response (usually diagnostic of bandpass curvature

response) but gave almost no response to curved stimuli. We conclude that endstopped complex

cells can exhibit stable curvature response but there exists no necessity that they do-so.

These explorations imply that endstopped complex cells can produce stable curvature-selective

response, however because of the the extraordinarily broad range of characteristics that complex

cells can exhibit there are many more ways of failing to achieve stable curvature response than

to achieve it. The presence of endstopping broadens measured orientation tuning, causes some

longitudinal positional-independence and causes the optimal-length to be significantly less than

the length of the discharge region.

5. Discussion

5.1 Curve Representation in Visual Cortex

Since Hubel and Wiesel's first explorations in visual cortex it has seemed likely that cells with
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5 Discussion

oriented RFs are involved in the description of visual contours. In this section we recapitulate

two dosely related perspectives on local curve representation at the level of striate cortex.

We begin by supposing that a contour is represented locally by a truncated Taylor series

approximation. The difference between the two versions depends on whether emphasis is laid on

the classical RF (discharge region) or the classical RF plus inhibitory zones. In the first version

we suppose that the curve ("j(s)) is represented locally as:

(s) = -y(O) + '(O)- - R2(.,. 0) (5).

where the first two terms are position and orientation estimates at arc position , = 0, and the

residual R2 depends on curvature. In this scheme we suppose that the representation of curves is

by local line segments and that the purpose of the residual is to determine the largest arc length

over which the error in using the linear (tangent-based) approximation is less than some value B.

Rearranging and taking norms,

-1(0) - -y'(O)sI < B (6).

that is, we wish to find the largest value of s such that the inequality is satisfied. Put differently,

the goal is to determine the tangent differential ("y(0)s), which entails finding both the tangent

and the maximal arc length. In this view discharge regions of different length represent assertions

about tangent differentials for different arc lengths, and the asymmetric inhibitory connections

from long to short RFs underlie selection of the longest arcs that fit the data. For slowly curving

arcs short RFs are suppressed by long RFs which represent the tangent differential, while for

rapidly curving arcs long RFs respond weakly and fail to suppress the short RFs which represent

the tangent differential. According to this viewpoint curves are represented at this stage as

overlapping sets of line segments of different length.

A corollary of this view concerns the asymmetric inhibition from long to short RFs. Clearly,

11
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if a long RF cell at a given position and orientation is strongly active, the activity of shorter RF

cells at that position and orientation is redundant. Therefore representing a curve in terms of

the longest segments that satisfy some error bound is a more compact representation (see Leclerc

(1989) for a development of minimal descriptive length ideas in vision)

In the second version the inhibitory endzones are considered in the RF description. Endfree

neurons are described as before while endstopped neurons represent an additional assertion about

curvature. Some endstopped cells respond selectively to the sign of curvature of the stimulus

instead of simply to the magnitude of curvature (Dobbins et al.. 1987. Versavel et al., 1990)

supporting the stronger position on curvature, and the proposal that endstopped cells represent

a position-tangent-curvature estimate (Dobbins et al., 1989) Although the evidence to date

suggests that the majority of endstopped neurons are not selective for the sign of curvature this

should be no more worrisome than the fact that the majority of cells preferring motion are not

directional. Nevertheless, if the endzones of endstopped cells exhibit phase-independent inhibition

as a variety of evidence suggests (Hubel and Wiesel, 1965: Orban et al.. 1979b: Tanaka et a!.,

1987), then it is difficult to account for curvature sign selective responses in a simple way. Among

the possibilities are: (i) not all endstopped neurons have complex-like endzones, or (ii) curvature-

sign selectivity arises from a difference in temporal properties in discharge region and endzones.

A temporal difference would imply that the degree of curvature sign selectivity would be speed

or temporal frequency dependent.

The endstopped simple model is closely related to the fuzzy derivative notion of Koenderink

and van Doom (1987) in which the RFs are low order derivatives of Gaussians. and the convolution

results represent the Taylor series coefficients (k-jets). The principal difficulty with this stronger

position is that endstopped cells also respond well to short, uncurved arcs. Indeed endstopped cells

respond well to both short uncurved arcs and longer, curved ones. Finally although endstopped

neurons respond in a curvature-selective way, the response of an individual neuron varies along

12
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many stimulus dimensions, and the response of an endstopped neuron should not be viewed as

delivering a number representing curvature. If interested in explicitly computing curvature, one

can combine the responses of RFs using the formulas of calculus (Koenderink & van Doorn.

1987: Koenderink & Richards, 1988). However, it is our view that the responses of endstopped

and endfree cells are employed in curve inference networks in the cortex in such a way that their

orientation and curvature-selectivities are exploited, but without explicitly or precisely computing

curvature (Zucker et al., 1989).

Both simple and complex endstopped neurons exhibit curvature-selective responses (Dobbins

et al., 1987; Versavel et al., 1990), and the differences in properties between the two suggest

differences in functional role. Simple cells have strong spatial phase dependence while complex cell

response is dominated by elevation of mean firing rate. If building global descriptions of contours

depends on interactions between neurons with nearby RFs (for example between endstopped cells

with RFs tangent to .a common circle), then the position or phase-specificity of simple RFs would

permit more spatio-temporally selective interactions than complex cells.

5.2 Endstopping Circuitry

Hubel and Wiesel (1965) discussed two models for generating hypercomplex cells. In one

the endzones are synthesized from a single long RF neuron, and in the other the endzones derive

from multiple, displaced, similarly-oriented cells. To a first approximation both models exhibit

similar behaviour (orientation-dependent end inhibition) with finer scale differences depending on

the precise structure of the components and the-degree of nonlinearity of their combination. We

have focused on the first of the two because it is the simplest model capable of explaining the

principal data.

We mention two circuits for generating endstopped neurons. In one, long RF neurons in

Layer 6 inhibit shorter RF neurons in Layer 4 (see McGuire et al., 1984: Bolz & Gilbert, 1986).

13
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A second circuit is suggested by the experiments of Weyand et al (1986) In this scheme,

superficial layer complex cells form the discharge region of Layer 5 endstopped special complex

cells via the apical dendrite or projection to Layer 5. The endzones could also result from this

latter projection or be synthesized on the laterally spreading basal dendrites in Layer 5.

Hammond and Pomfrett (1989) find approximately half of their sample of special complex

cells (35 out of 68) to be nonendstopped. On the other hand. in their investigation of Layer 5

neurons Weyand et al., (1986) find the special complex property to be highly correlated with the

presence of endstopping. Their striking finding was that the supragranular layers are a necessary

input for the special but not the standard complex cells of Layer 5. They consider both the

possibility that Layers 2-3 are necessary to drive the special complex cells, and that these layers

serve to transform a standard complex cell to a special complex cell In view of the correlation

with endstopping these authors suggest that both the discharge region and endzones are supplied

via the supragranular layers. As suggested above, a simpler possibility is that the discharge

region is derived from supragranular inputs, but that the endzones are synthesized on the basal

dendrites of the Layer 5 pyramids. This proposal has the virtue that the RF center is derived from

a process (apical dendrite) or processes with less lateral extent than whose which give rise to the

endzones. It was observed earlier that the endstopped complex model naturally displays some of

the characteristics of special complex cells. However, also note that convergence of multiple Layer

2-3 complex cells onto an electrically short piece of apical dendrite has the required characteristics

for the subadditive synaptic mechanism discussed earlier which could underlie the special complex

property independent of the presence of endstopping.

Finally, the simulations show that a complex cell whose response is the sum of input simple

cell responses does not exhibit broader orientation tuning than its simple components or less

length summation. However both of these will occur if the inputs are combined subadditively,

and this seems to us the simplest way of understanding the observed differences in length and
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orientation responses between standard and special complex cells Hammond and Pomfrett (1989)

have suggested a functional distinction to complement the mechanistic difference suggested by

the complex model. They interpret the greater directionality and broader orientation tuning

of special complex cells in terms of specialisation for motion rather than contour processing

Although it is reasonable to suppose that cells specialised for motion or contour analysis are biased

to different operating points, unequipped with temporal dynamics. the complex model used here

cannot address that issue. Also, Versavel et al. (1990) report that in addition to neurons that

prefer high curvatures (strongly endstopped cells) and those preferring low curvatures (length

summating nonendstopped cells) a third class of cells respond to all curvatures. Although this

class was diverse in orientation tuning and degree of endstopping, many of its members appear

to be special complex. This is supported by the laminar distribution found. We note that when

the endstopped complex model is biased to exhibit broader orientation tuning and less length

summation (within the discharge region) it naturally exhibits broader curvature response.

5.3 Endstopping and Psychophysical Curvature Discrimination

Watt and Andrews (1982) compared the curvature discrimination of human observers to

an ideal statistical observer and found that the relative efficiency of the human increases with

orientation range up to about 40 degrees and then diminishes. Wilson (1985) also examined

curvature discrimination and compared the results to the performance of his line element model

a point processor model in which the vector of responses of a number of spatial frequency and

orientation selective mechanisms is compared for different patterns. Wilson and Richards (1989)

conclude that the model corresponds to the human data at high curvatures but not at low.

For low curvatures they advocate pooling responses of elements along the tangent direction, a

special case of cocircular tangent interactions (Parent & Zucker, 1989). A method of computing

the connection compatibilities (and hence interaction strength) between discrete tangent and
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curvature estimates in nearby local coordinate frames has been developed by Iverson (1988).

Wilson (1985) tested the behaviour of the line element model with curves of increasing arc

length and found results essentially similar to Watt and Andrews (1982) However one curious

and unexplained feature of the latter's results did not appear in the model's behaviour In the

curvature discrimination data a peak relative efficiency occurred at an orientation range of 37.5

degrees (K = 0.065 radians/arcminute) close to the predicted value of 40 degrees, and a second,

unexpected peak occurred at an orientation range of 68 degrees (,. = 0.12 rad/arcmin). Because

of the number of data points these were considered to be approximately 40 and 80 degrees. The

secondary peak occurred at a radius of curvature of 8 arcmin This value is compatible with

the smallest oriented foveal RFs found in primate V1 (Schiller et al., 1976: Parker & Hawken,

1988) when one takes into account that the shortest RFs are often endstopped and hence their

discharge region length would be expected to be systematically underestimated (Dobbins et al.,

1989). Our hypothesis is that the unexpected second peak is due to the smallest endstopped

units - those that subserve the highest curvatures to which the human visual system is sensitive.

This hypothesis leads to the following prediction. If one repeats the experiment in which for an

arc of fixed length, curvature (and hence orientation range) are varied, at different arc lengths,

the secondary peak will occur at the same curvature value, and not at the same orientation range

value. If one starts with too long an arc however the smallest units will never come into play and

the discrete nature of the underlying process would not be expected to emerge.

Watt and Andrews (1982) also observed that with prolonged fixation arcs of high curvature

take on the appearance of a polygonal curve. This is attributable, we believe, to adaptation of

the smallest or highest curvature units, leaving the remaining larger, lower curvature units to

represent the curve. An indirect test involves measuring the time for the effect to set in, with

and without pre-adaptation to very short lines. We predict curvature-selective adaptation with

uncurved adapting stimuli.
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5.4 Conclusions

In generalising the endstopped simple model to include complex components we found that

the special complex property could depend on both the presence of endstopping and occlusive

or subadditive interaction among inputs (abstracted in the model as saturating activation). The

complex endstopped model exhibits curvature-selective responses but is not uniquely responsive

to appropriately oriented and curved contours. However because of the full wave rectification of

subunits in the complex model the endzone inhibition is phase independent. On the one hand

this makes the inhibition more all-encompassing than if the endzones were synthesized from a

simple cell, while on the other it precludes the possiblility of sign of curvature selective responses

arising from a spatial phase difference between the discharge region and endzones,
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7 Appendix I

7. Appendix 1.

The positive part function 4(R; p. F) is closely related to elementary functions. When r - 1

it reduces to a hyperbolic tangent, which in turn can be written as a difference of standard and

reversed logistic functions:

1 1

O(R;p.F = 1) = tanh(2R/p) - 1 -- R,', 1- ('1

Re-introducing F and fixing F - 1 the postive part function can be written as.
eRo/p

1 1
,(R; p. F) = - -. (.42)

1 + f-(R-Ro)/p R ' , R,, r

where the first term is a sliding logistic function, and the second term determines the amount of

compression of negative values. This form emphasizes that gain (p) and spontaneous firing (F)

are not decoupled (see also Figure 2).
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8 Figure Legends

8. Figure Legends

Figure 1. Models of the simple and complex cell components Spatial integration is followed

by a sturating. rectifying nonlinearity.

Figure 2. The generalized rectification function o(R; p. F). R is the input and as F (written

S for spontaneous in figure) varies from 0 to 1 the'output goes from half wave rectified to

unrectified. p controls the contrast sensitivity or gain.

Figure 3. The response of a complex cell instance and one of its simple components as a

function of line position, orientation and width. The simple cell parameters are described by an

even symmetric Gabor RF with length 61 pixels, envelope aspect ratio (AR) 2.0, and modulation

frequency uo = 0.05 (5 pixels = 1/4 wavelength). The complex instance has 3 simple components

with spacing 3 pixels and weightings given by a Gaussian with o, = 4. The line weighting function

(bar response as a function of position) is shown for long bars and widths of 3, 5, and 9 pixels

(solid, dotted and dashed curves, respectively). The fourth complex cell line weighting function

(very long dashes) illustrates half wave rectification of subunit responses (line width 9): Notice

the apparent reduction in RF width that results. The orientation response is for bars centered on

the RF and rotated in steps of 4 degrees for the same bar widths.

Figure 4. Length, orientation and curvature tuning curves for a complex model instance

biased for subadditivity. The dotted (p = 65) and dashed (p = 43) curves illustrate two degrees

of saturation while the solid curve repeats the nonsaturating characteristic of the previous figure.

For convenience of comparison all outputs are normalized.

Figure 5. The response of an endstopped instance in which the small cell is simple (size:35,

AR:2.0, uo=0.05, cS=2.8) and the large cell is complex (size:61, 3 components with spacing=4,

and Gaussian weighting a = 10.0. Each component has AR=3.0 and u)=0.05.) a. The response

to (binary) curves varying in radius from 0 to 200 in steps of 10 as a function of curve width.

The curves are of width 1,3,5,7. and 9 pixels (solid, dotted, dashed, long dashed, and dot-dashed,
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8 Figure Legends

respectively) b. The response to curves of orientations from 0 to 40 degrees from optimal in

steps of 10 (curve width 5). The solid curve corresponds to the dashed curve in part a.

Figure 6 The response of an endstopped instance in which both small and large component

cells are complex. Both the small and large complex cells are composed of 3 simple components

of size 35, spacing 4. The small and large cells have Gaussian weighting ', = 4.0 and 10.0, gains

5 = 1.9 and cL = 1.0, and aspect ratios of 1.0 and 3.0. respectively a The response to

(binary) curves varying in radius from 0 to 200 in steps of 10 as a function of curve width (solid.

dotted, and dashed are of width 1, 5, and 9 pixels respectively). b. The response to curves of

orientations from 0 to 40 degrees from optimal in steps of 10 (curve width 5) The solid curve

corresponds to the dashed curve in part a. c. The response to a curved line (width 5 pixels, solid

curve) and curved edge (dotted line) of radius 30 pixels as a function of position across the RF

At the leftmost edge of the graph the curve is at the boundary of the RF and curves away from

the RF, at the center it is centered on the RF and at the rightmost edge is on the boundary

of the RF curving toward the RF. d. The curvature response to a curved edge when the edge

is centered on the RF. The curve orientation is varied, and the response curves for orientation

deviations 0 and 10 degrees are indistinguishable, while there is no response to 20 or 30 degree

deviation.

Figure 7. a. The length response for the endstopped complex cell of the previous figure

(line width 5, step size 2). b. The orientation response of the same cell for lines corresponding

to the peak of the length-tuning curve (22 pixels, solid curve), the length of the excitatory

center (35 pixels, dotted curve), and longer than the discharge region plus endzones (80 pixels,

dashed curve). c. The orientation response when the positive part function is employed with

moderate spontaneous firing (r = 0.5,p = 40) for the excitatory component (solid, dotted, and

dashed curves show the response of the endstopped cell and its small and large components,

respectively). d. The curvature tuning curve for the cell (with spontaneous firing as in part c.) as
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8 Figure Legends

curve orientation is perturbed (0,10,20,30 degrees for the solid, dotted dashed and long dashed

curves, respectively).
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7. Supported Personnel

Appendix V

A Mean Field Model of Optic Flow Estimation, 1991 ARVO abstract, and manuscript.
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Mean Field Theory and MT Neurons
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Abstract In the next section we treat the generic features of visual
cortical architecture that we think underlie the computations

In this paper we consider the problem of obtaining reliable that are described subsequently.
estimates of the optic flow field and its variation. We shall ar-
gue that circuitry in the middle temporal visual area (MT) is 2. Visual Cortex: Estimators and Architecture
arranged to provide mean field approximations of the optical
flow field - the maximal neighbourhood over which the local In this section we briefly review some features of the or-
field can be well-approximated as uniform, parallel translation. ganization of the primary visual cortex (VI) and the middle
In addition, the way the mean field approximation varies with temporal area (MT) that are germane to the developments
neighbourhood size and position is informative about the vari- that follow.
ation of the flow field. Further, we show how receptive fields Primary visual cortex is organized into columns of cells
can be synthesized to represent the first order differential in- which share their preferred orientation [Hube & Wiesel. 1962].
formation about the flow field. The same ideas are applicable Thus each retinal point is multiply represented in a set of
to the binocular disparity vector field, and lead us to predict columns spanning orientation space. In MT. an area which
the existence of extrastriate neurons that are specialised for a variety of evidence indicates is specialised for motion anal-
the local shear and stretch of the disparity and motion vector ysis. the cortex is also organised into columns [Albright at
fields. al. 1984). In this case the units in a column share a pref-

erence for direction of motion. In addition. MT neurons are
speed-selective with individual cells exhibiting a broad range

1. Introduction of preferred speeds and bandwidths (Maunsell & Van Essen.
Our goal is to understand how the brain estimates surface 1983).

Some of the cells in V1 exhibit an orientation-specific, an-
shape from the visual information available to it. This problem tagonistic relationship between the receptive field center and
had played a central role in theories of vision (Gibson. 1950: zones beyond the ends of the excitatory receptive field. Orig-
Marr. 19821. Here we shall consider those cases in which there inally termed hypercomplex when they were first described in
are vector fields associated with the surfaces: the motion flow extrastriate cortex [Hubel and Wesel. 196S]. these neurons
field and the binocularity disparity field, exhibit a differential response with stimulus length, and are

Koenderink has repeatedly emphasized the value of the commonly referred to as endstopped. We have previously de-
differential structure of vector fields. In the optic flow field scribed a computational model of endstopped cells %thich is
these are invariant with a constant translation whether due length selective. but which is curvature-selective in addition.
to object movement or an eye movement. Thus the appropri- Hubel and Wiesel recognized that endstopped cells should ro-
ate setting for the first order differential information is aline spond well to highly curved stimuli that avoid the endzones.
space. In both the binocular disparity field and the motion and recent neurophysiological experiments demonstrate that
flow field, all the information about surface orientation is endstopped cells are curvature-selective [Dobbins at al. 1987).
contained in the deformation component IKoenderink & van In area MT many cells exhibit a direction and speed spa-
Doom. 1975.1976: Koenderink. 19861.  cific antagonism between center and surround [Allmon at al.

In this paper we shall show how the brain could estimate 1985). They also exhibit differential response with flow field
components of the gradient of the optic flow field. we shall variation. In the following section we develop a view of the
argue that instead of simply differentiating the flow field and estimation carried out by MT circuitry.
combining the partial derivatives, the circuitry of the middle
temporal cortex (MT) determines maximai mean field esti- 3. The Mean Field Model
mates - the largest convex regions where the flow is well-
approximated as parallel. If such patches can be obtained. Although field theories can be formulated in differential
certain simplifications follow in the gradient computations. (point) or integral form. it makes little sense for computa-



tional vision theories to be formulated in differential form. broadband units These are cells which have a speed band-

There are several reasons. One is that because of the uncer- width of two to three decades (r#.).

tainty relation between a signal and its derivative, one cannot
obtain information about the infinitisimal. differential infor- bandwidth of two to four octaves ri hva.).

mation in a flow field. A second constraint is imposed by
the representational precision of the local estimators: shrink- The narrowband units span the range of speeds to which the
ing the temporal neighbourhood shrinks the data precision system is sensitive. and both types of units cover the set
correspondingly. Thirdly, the surface features in motion can of retinal directions and the retina itself. We shall not be
change in size. orientation, and shape. For example. if we concerned here with detailed description of these cells, but
modeled the time-variation of an image feature as a wave mention that they are meant to correspond to Area Vi and
group. its motion is characterised by both phase (w/k) and V2 units.
group (dwl/dk) velocities.

Since the visual system cannot have access to the point 3.3 Pooling Responses
information, it must employ spatio-temporal integral mea-
sures. An essential part of its task is determining the neigh- At the next stage the responses of many of these units are
bourhood size over which a particular order estimate holds. pooled, and it is to the function of this process that we now
Here we propose an approach to how the part of the co- turn. Let us sum over a convex retinotopically-mapped region.
tax specialised for motion analysis determines the best linear the responses of a set of narrowband units whose receptive
approximation to the flow over various neighborhood sizes. fields cover the region. All the units are tuned to the same

direction (0j) and speed of movement (vi.). Although the
, , -image and inputs are discrete, for convenience we shall refer

to integration. The spatial integral of the unit responses over
a disk D(r, x) is:

}v = r#,. -,uis. (1)

SThis measures the degree of correspondence of the fow field
to a uniform, parallel flow in the direction to which the units
are tuned. Normalizing by area. we obtain a space-averaged
measure of the projection over the retinal area in question:

= R. "" (2)

Alternatively. summing over the broadband units (ro.).
Figure I Four fow patterns. one of which Is discos, one obtains a measure that varies with direction but not with

dieous. Il of which are wdl-approxlmated by uniform speed. Therefore a pattern translating in the right direction
translation over the small neilhbourhood disk but not but with inhomogeneous speed will elicit strong response.
ovw the larg on. We noted above that the distribution of response with di-

rection contains important information about the field struc-
3.1 Definition of Terms ture. but it also should be clear that the set of directional

spatial averages over a particular neighbourhood does not
By the optic flow field we shall mean the mapping. v: uniquely determine the flow field (see Figure 1). Therefore

RZ-. R2.from retinal coordinates to TM the tangent bundle we investigate the significance of the variation in the moan
of the flow field. Hence the image of x at time to is the velocity field estimates with integration area.
vector v(a)It=ge Tr' direction field is a mapping from retinal
coordinates to the direction of the flow velocity (x Z v/lvII). 3.4 Analysis of Flow Field Variation with Area
By a mean field approximation of the flow field we shall mean
the vector or differential I-form that is the estimated average Now we wish to examine how the integrated response
translation velocity over a specified disk (D(r, x)) around a varies with area. For convenience we shall simplify the note-
point. Naturally. this comprises both the average speed and tion. ignoring the dependence of R on position and the flow
direction. field, and simply refer to its area-dependence R(A). Either R

or I can be employed for the analysis. It is assumed that the
3.2 Initial Measurements local unit measures are nonnegative. implying that LR :> 0.

Our goal is to estimate the affine. linear structure of the Case 1. R(A) constant. a. If R(A) = 0. then there is no
flow field. Toward this end we assume the availability of two component of the flow field in the direction E. b. If R(A) > 0.

types of local, speed selective, direction selective units. then ] -4 0 as 1/A. For the minimal disk of area Ao there



is a response but there is no contribution from the surround- However it is easily shown that this information is contained
ing area. Thus there is either no field outside A@ or it is in the first variation of 1. To see this. consider the difference
orthogonal to 0. in the value of It over disks of area a and b (b > a). Some
Case 2. R(A) increasing. There is a contribution to the rearrangement yields:
integral outside A,. There are three principal cases according
to the sign of the second derivative of R with respect to A. r R(b1- Re)R
a. d2R/dA2 > 0. R inflects up implying that the field corre- 1(b)-I(.) = R(b) R(a) J,-a ) -
sponds better to 0 over a larger area. This occurs when the ( 3) L -  

6]
average field moves toward the estimators either in direction (3)
or speed. Generally. 0 would not be the mean field estimate at The terms in braces are the average projections of the flow
smaller areas. Thus this case generally represents a change field onto the annulus of outer radius b and the disk of radius
in the mean field approximation with area. a. Therefore the whole expression is the difference of the
b. d2R/dA2 = 0. R increases proportional to area. This field's projection onto the annulus and the disk it surrounds.
indicates that the field is not changing systematically with Hence instead of evaluating the infinitisimal second derivative
respect to 0. It does not necessarily imply that 9 is the best of R. the finite first variation of the space-average measure is
mean field estimator however. For example, if the field is a used.

uniform field translating at an acute angle with respect to Consider a finite difference scheme in which 1(A) is as-

direction 0. R increases linearly with A. the slope depending timated at intervals e.g.. A*. 2Ao. 4A,... Then the differ-

on the relative angle. In this case there should be another ence of the successive area-normalized integrals is computed:

direction that is the best mean field estimate at all areas for R(Ae) - 1(2Ao) and so forth. In physical terms. we suppose

which this condition holds. that there is a set of neurons the responses of which corre-

c. d2R/dA2 < 0. R inflects downward, implying that the spond to 1R(A). 1R(2A.) and so forth, and further, that are
estimators conform better to the field over smaller areas. If neurons which represent the differences of successive terms in

* is the mean field direction for small A but not large A then this sequence. These neurons encode the variation of the flow
the field direction is changing (either smoothly or abruptly). field over successive area increments. In addition to capturing
If 0 is the mean field direction for both small and large A. then the rate of change of the flow field, this circuitry can also be
the field is either less parallel (the distribution of R over the exploited to determine the largest neighbourhood over which

the field is well-approximated by parallel translation. In par-set of dirctions is broadening with increasing A). or speed i ticular if 0 is the direction of maximum response over a disk
changing.

Note that we did not specify whether integration was tak- A. and #(A) - 11#(A +j) !< 0. then A4 can be replaced in

ing place over narrowband units, broadband units or both. subsequent computations by Al +, .

Suppose that separate integrations ate dane for the narrow- It is natural to suppose that the difference computation
band units tuned to separate speeds, as well as for the broad- occurs within a cortical column. For most smoothly varying
band units. Since the latter are concerned only with direction patterns, all receptive field centers less than some size are
and not with speed (over a broad range) their change in re- strongly inhibited by their surrounds. Then at some point in

sponse can only be due to a change in direction. In contrast the sequence there is a center which is both strongly activated
the narrowbiind unit integration changes with both speed and and not strongly inhibited. The area of the center of this cell

direction. However the difference between the change in re- is the maximal patch area.

sponse due to direction and speed. and that due to direction, Note that although the magnitude of the variation of the

is the change in response due to speed change. Assuming flow field surrounding a point can be estimated in this way.

quasi-onhogonality (e.g. a stimulus halfway between centers this scheme does not represent the nature of the variation.

of two adjacent direction or speed classes elicits a half re- There would seem to be two possibilities. The first is that

sponse from each). summing over speed and direction classes, the form of the variation is distributed over the set of direction
and subtracting broad from natrowband totals, one could in and speed integrals over patches of the field. Alternatively.
principle partition the variation into speed and directional vani- particular forms of variation may be explicitly represented in

ation. We note in passing that the convw, ity detector model the response of individual neurons. In the next section we

of Nakayama and Loomis 11974] involved summing (center- shall consider how this might be accomplished.

surround velocity filters) over direction to detect speed dis-
continuities in the optic flow field. The interpretation of the 4. Estimating Differential Flow Structure
responses of such detectors is problematic in a world with
nonplanar surfaces however. In this section we consider how neurons could estimate

the spatial gradient of the optic flow field. The circuitry de-
3.5 MT Receptiv Field Organization scribed in the last section is used to determine the largest

neighbourhood in which the flow can be treated as parallel.
Now we shall attempt to connect the process descnld The mean field circuitry imposes a choice of coordinate sys-

above to what is known of cortical organization. We are in- tam (p, n). representing the parallel and normal components
terested in the value of R(A) and its first two derivatives, of the flow. v = (9p, us). and selects a neighbourhood size



Figure 2 A schematic representation of two direction-
selective receptive fields with antagonistic center and
surround. The surround Is split into two subzones In
each case. M

R
over which the normal component is negligible. Hence over
region A. v P (up,0).

Consider the first order variation of the flow with respect

to up. The variation is decomposed into and o. Hw-

ever. keep in mind that the estimates are always integrals over U

area. We now propose that these quantities can be estimated
with center-surround mechanisms differing in only one respect
from those described in the last section. Suppose that the
surround is divided into halves. In one half the constituent
units are low pass for speed and in the other hald high pass.
Figure 2 shows examples in which the division is parallel and -

perpendicular to the directional preferences of the center and Figure 3 a. The speed dependence o the response of

surround. The additional requirement is that the rolloff rates the center (C). and the two halves of the surround (L

of the low and high pass mechanisms are equal and opposite. and H) of a hypothetical center-surrovnd cal. b. The
response of the cl with the gradient of speed. Is the

Before proceeding. it should be mentioned that the surround direction normal to the axis of division of the surround.
units can actually be bandpass. the important thing is that These are nt quantitative simulations, mnely a quail.
they are lowpass and highpass in the window of speeds to tative sketch.

which the center is sensitive. Figure 3a shows the arrange- is divided parallel to the preferred direction, the cell responds

ment. All the units (both lowpass and highpass) comprising proportional to the (parallel component of) speed change nor-

the surround are summed as before, and the area-normalized mal to the flow direction, that is. proportional to the shear
value is subtracted from the value for the center. of the field. Generally. the shear depends on s wl

Now consider the response of this mechanism to flow pat- To the extent th e mean field circuitry hs a chosen a

terns. For a uniform, translating pattern, the cell behaves as neighbourhood size sucht that fie 0te contribution of this

before - the surround cancels the response of the center. This neg li e sulato = i ore otr ine the

is because the equal slope condition ensures that the sum of performance limitations of this scheme.

the low and highpass units is invariant over a range of speeds.

However. its response is quite different to patterns with spa- S. Summary and Conclusions

tial variation of speed. Suppose that. in the coordinate frame
(p, n). the velocity field is given by: v = (to +rmp, 0) where m 1. Integration of the broadband units underlies the com-

is the spatial gradient of the speed. The cell will respond pro- putation of the mean direction field, and the differential of

portional to m. To see why. note that we could equally have this field describes the rate of directional change with area.

described the surround organization as a difference of two 2. In contrast, integration of the narrowband directional

spatially segregated low pass (or high pass) mechanisms of units underlies estimation of the mean velocity field, and its

identical rolloff. Thus the surround represents a first spatial differential describes the rate of change of velocity (both di-

difference of speed. and responds proportional to the speed rection and speed) with area.

gradient. This is shown in Figure 3b. The center serves to 3. The result of the mean field estimation process is a

establish that the field is sufficiently parallel and has average set of patches of varying size covering the flow field. Each

speed within some range. and the surround modulates it pro- patch has an associated velocity vector.

portional to the gradient. Observe that swapping the low and 4. To the degree that the mean field circuitry succeeds

high pass regions reverses the sign of gradient to which the in choosing a neighbourhood size such that the normal com-

cell responds. ponent of velocity is negligile over the neighbourhood, the

A cell with the surround split as above is interested in vector field is locally reduced to a scalar field, and the gradient

the speed change in the direction of the flow. If the surround of the field is reduced from a second order tensor to a first



order tensor (a vector). The consequence is a reduction in
complexity in the sense of the number of numbers associated
with an estimate.

S. Although space does not permit its development here.
it is possible to develop estimates of the components of the
disparity gradient using opposite slope estimators (near and
far cells), in an analogous manner to that described here for
the components of the optic flow gradient.

6. The ideas described here have so far neither had their
quantitative plausibility established in simualtions. nor their
truth refuted in physiological experiments. Both courses of
action will be pursued.
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1. INTRODUCTION 1

1. Introduction

In this paper, we study certain evolution equations of embedded plane curves where the speed of
the deformation is a function of the curvature, and whose direction is in the normal direction.

The curve evolution problem is relevant in applied sciences. The study of immersed dosed
curves evolving as functions of their curvature has been carried out for crystal growth [Langer,
1980; Ben-Jacob et al., 19831, flame propagation [Sethian, 1985; Sivashinsky, 1977; Osher and
Sethian, 19881, and curve shortening [Gage and Hamilton, 1986; Grayson, 1987]. We would like
to investigate properties of the dassical solutions of these evolution equations. As pointed out by
the referee, similar work has been done independently by [Angenent, 1989]. Finally the equations
we use for the curvature of a plane curve evolving according to the general law given below are
classical; see e.g. [Brower et al., 1984]. In a sequel we plan to consider the weak solutions when
shocks develop [Lax, 1973; Lax, 1971; Osher and Sethian, 1988].

The research has been motivated by the study of certain problems in computer vision [Kimia
et al., 1990; Kimia, 1989]. Indeed, we are interested in studying the problem of shape perception,
and explicitly in the reconciliation between the parts versus protrusions dichotomy in computer
vision. This paper is primarily concerned with providing a rigorous basis to these results.

The authors would like to thank Professor Ciprian Foias for some very helpful conversations
on this paper, especially about Lemma 4.2.1.

1.1 Notation

We will now set up some of the basic notation and concepts which we will need in what follows.
Let C(s,t) : S'1 -- R2 be a family of embedded curves where t denotes time and s parame-

terizes each curve. We assume that this family evolves according to the evolution equation

=a(s, t)T + (s, t) (1.1)

C(S,0) =Ca(S), (1.2)

where NV is the outward normal, ic is the Gaussian curvature, and a, /P are arbitrary functions.
For each deformation {a, ), there exists another deformation {0,#/'} such that the resulting
traces of curves are equivalent [Gage, 19861. Furthermore, we constrain the deformations to be
determined by the local geometry of the curve, i.e., / should be a function of curvature [Kimia,
1989]. Therefore, we consider the case a(s, t) = 0 where P is typically of the form 6(r.) = 1-EcK.
Assume that Ct = C(.,t) is a C2-ciassical solution on some interval [0,te) (t' <oo). Thus we are
considering 6' solutions of the system

a- =N (1.3)

C(,0) = Ce(a), (1.4)

(Note that we do not rule out the possibility that a C2-solution may exist for all t > 0.)
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Let,

g(s~t) :=I-I1- [z. +y .]12,

denote the length along the curve. The arc-length parameter , is then defined as

!(a, t := 10" 9(f It df .

Let the positive orientation of a curve be defined so that the interior is to the left when traversing
the curve. The tangent, curvature, normal, orientation and length are defined in the standard
way. We will take the normal to be pointing outwards, where the inward or outward is determined
by the interior, or equivalently by the orientation of the curve. We then have that

-0 ac 1 x
T:= -F =1.-I05 g CIS

Io1 = 1 ofI
X.- IT -1a

aTl g as"

d-I icgO's

0:= L(T, x)

():=0 g(s,t) ds

We also define a quantity which we will call length-squared by

L(2)(t) I' gj (s,t)ds.

Finally, we let

d(th ettlasu eGt)usin cuv
denote the total absolute Gaussian curvature.
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2. On General Curve Flow

In this section we will derive the evolution equation for the tangent T, normal R, metric g,
curvature ic, orientation 9 and length L, for families of curves satisfying (1.1).

It is easily established that Pr =_g

which will be used in the following proofs. Note that these evolution equations are for the general
deformation {a, #}.

Moreover, we can compute that the metric g evolves as follows:

--g- G1 8C 8C
2  8C 8 8C

=2< ', 8 >

=2< T

-83
Os'0s Os

= 2 < gT,a.T - xgN +/..N + Pxgf >

= 2g[. + pxig].

Hence, we see that Og
8= CE + ficg.

In the special case of a = 0, og
89 = oIg.

We will need the following change of partials for computing evolution equations:

898 8 18

-g, 8 100

S-[a + Oxg] -+ 8 _

g F FSN
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Next we have the following evolution equation for tangent:

of- a ac

-'a + l]O ac ac
= -[. + Oe1ig + ! --

-1 8 -

= -[a. + fig]f + g4aT + i3IR +

[, + #-11 + a. + a-/ + - +P

- P, - arg 1.

Similarly, for the normal we see that

W=< -,r> T

= < -,N> T

= * - 10, - ctg] .

Next we define the orientation of a curve as the angle the tangent makes with the x-axis. Let
T = (cos(0), sin(e)), so that IV = (sin(8), - cos(O)). Then,

of (-sin (a), co( ))
-- N

Therefore,

As for curvature, we compute that

ax aa + 1

- +[a, +,cg,] + I[- + K
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C- i + 8X+ .+

-
88"OK 2= 9 P--8 + Cf Z9 r.fie2

For the length, we derive

OLO jgat)~

= f Dg(st)d

= j'[c. + t,g] da,

and similarly for length-squared,

8L(2) 8 t) da

= - 822(St) d

= J 2g[a. +Ifig] ds.

We now specialize to the case f(x= 1 - fic which is a common model frquently used in
applications such as flame propagation, crystal growth, among others. First, we can easily show
in this case that the metric evolves according to

09g (_2 + ,)g.

Second, for the tangent and normal we have

of CK
g

=-T.

Next, the orientation evolution is governed by

N= g
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Similarly, one can show that the evolution equation for curvature is

axjF= fA.. + -K _ X.

Finally, length evolves as
L.t=2T - jK2gds.

It is also useful to further constrain the flow and obtain evolution equations for the particular
case of c = 0, or A = 1, for which we have

ag-= Kg,
at

M- 01O0

at 0,

8K 2

9L
at

The evolution equation for curvature may be solved explicitly as
X(8, t = 4.910)

1 + X(8, O)t

This implies that the classical solution wil fail to exist when
-1

K(3,0)

Hence, if the initial curve to (1.3) is convex, the equation will have a classical solution for all
time.

The metric equation may also be solved as
--g (S Ig(s, t

A rc(s,0)

g 1+K(8,O)t
8An(g) K(s,O)

a-t 1 1+ X(8',)t
ln(g) n (1 + (s,o)t)

In(g(s,t)) - In(g(s,0))= In(1 + x(s, O)t) - In(1)
In(g(s, t))= In(g(8, 0)) + In(1 + (8, O)t)

g(S,t)= g(s,0)(1 + (s,0)i)
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Hence, the metric changes linearly in time with a curvature dependent coefficient. In particular,
for negative curvature the metric decrease tc zero at exactly the time the shock is formed.
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3. Bounds on Length, Curvature, and Travelled Distance

In this section we give bounds on the length and total absolute curvature for the family defined
in Section 1. As before we are particularly interested in the case a = 0 and fi(s, t) = 1 - Elc(s, t)
which is of interest in physical applications and recently in Computer vision [Kimia, 1989].

3.1 A Bound for Length

LEMMA 3. 1: Let C(.9, t) be a solution of (1.3) for t E [0, t') and K13(,) :5 M for all K E R
(regarding P3 as a function of x). Then,

L(t) 5 min(L(0) + 2rt, L(0)e"t).

In particular, for fl(K) = 1 - x

L(t) :5 min (L(O) + 27rt, L(O)e.

Proof. We have
Lt= 2~r - c Jf2 K 2g ds.

so,

L(t) :5 2,rt + L(0).

Note, the equality holds for c 0. Alternatively,

Since K/ 98(K) < M

O- <12wMg ds

<5ML(t)

Therefore,

(In [L(t)])' < Ml
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that is,
ln[L(t)] <Mt + in(L(0))

L(t) < L(0)em'.

In particular for = 1 - ex, M 1, and

Lqt -5 L(0)ei-.

Remarks 1.
(i) In this case, as e -o co, L(t) 5 L(O). It is interesting to observe that the two estimates
complement each other: for small e the second estimate is very large making the first estimate
more useful. However, for large e, the first estimate is exaggerated making the second estimate
more useful.
(ii) The same proof as above shows that the length-squared

L(2)(t) := 1 2 ds

is bounded by L(2)(O)eM. (This fact could also have been used to bound L(t), but the bound
would have been more conservative.)

3.2 A Bound for Total Absolute Curvature

LEMMA 3.2: Let C(s, t) be a solution of (1.3) for t E [0, t'). Suppose that x/3(x) < M, and
8M <0 Then,

k(t) <_ R(o).

Proof. Define
q(t) 2= q(,c(s,t))g(s, t) ds,

where q is the piecewise smooth convex approximation of f(x) = IxI gven by

( L+ jz2 if X< 1

Then

f7't) j qM~ctg da + jo q(rK)g da

q,(X)(,, + X,2)g da + q(K)(,fxg) da

_j - f q(C)P9,a CM + jrqqc) iq(r.)] (P3ag) La.

_0q,)q5).1, + j [t) q11(x),f, di + j (c) - rq]()](/3g)ds.
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[ q.,.(,.)r, 6 di + [q(,) - rq(ic)](fxg) ds.

• /0 0q ...t qn(r)IC2#M di + j~rq(,c) -q ,q(#c)I(flicg) da.

Since P, < 0 and convexity of q requires of > 0, we have

f (05 '[q(x) - rq.(.K)](,61(9) ds.

Note that (t) _< 4(),

so that a bound on q is a bound on c. Moreover, we have that

0 <_ q(x) - xq'() <5 { if Xi>

Now since

and [q(tc) - rq.(K)J _ 0,

f(t) _ M [q(x) - r-(q,)]gds.

_<M gds.

1 2 w

2n !L(t)

and so,

W'()< -LQR _0 M L(t)
2n

Since by lemma 3.1 the length is finite, letting n --* oo, we get

Te(t) < 0,

or
c(t) < (0).

I

Remark 2. The conditions of the above lemma holds for/6(K(s, I)) = 1 - c (, t), for c > 0.



3. BOUNDS ON LENGTH, CURVATURE, AND TRAVELLED DISTANCE 11

LEMMA 3.3: Let a family of curves satisfy (1.3) with convex initial condition, i.e. ic(s, 0) >- 0.
Then, rc(t) = rc(0) = 2wr and the curve remains convex for all times.

Proof. For convex curves,

c(, 0) =j~d =2

There is some neighborhood of time such that ,c(S, t) > 0 for all a. Therefore,

- ['cqg + rogtj ds

f 2w pr'2)g + 'prg] dS

-Jfig ds

-0.

Hence,
R(t) = 2r.

Since only convex curves can satisfy this condition, the evolved curve must be convex.

LEMMA 3.4: Let a family of curves satisfy (1.3) for which & < 0. Then, if ,c5(3,t) #0 for
all/5 and 0 < t < e'

FCQ) < .C(O)

For ,,=0,

Proof. This proof is due to Sethian [Sethian, 19851 and we include it here for completeness wvith
a few changes.

Without loss of generality pick the starting point 1 = 0 to be a zero of curvature such that
positive curvature begins in the positive direction of the curve. Partition the interval [0, L(t)J
into n + 1 maximal subintervals,

I[N = 0, hl, [h,!21, 1 ,[S,,E14uJ1" ,[5n 9 ;.+1 LON}J,

such that 45() is entirely positive, negative, or zero in the interval (5j,.,+ 1) for i = 1, 2, - , n.
Then, 5i are zeros of curvature, ic(S,) =0. Note further that in general s, = si(t). Also, let

1 if ic(l) > 0 for 1 E (a, b)
AP.i [a b) 0 if ic(l) = 0 for !SE (a, b)

-1if ic(l) < 0 for 1 E (a, b)
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Then,

- 1 d,

n~'+ 84 Ii2 g 41141 nsn
-s + Ei + si+i, t) Ig(8i+it)-- E1(itj(jt-j

1= =0 i=O
n

- EI' (jxtg + jijgtjda

Since intervals for which curvature is uniformly zero do not contribute to the sum, we will discount
them. Without loss of generality assume otherwise in the following.

E +. 1 [-tg + IcIfxgJ c91
& "I I+

ftA 441 ( #, - # x2) + Ir1fl i1 d !

= - [ (-#jj] d! [-T, - - + fir1i1]++d

=0i0 L r.+,,, [5,1+~~~jjd
=-FP(K, P,, I ,+,)I)i#(,+)-#,+)

i--o

i_=0

Now, by our original assumption p(r., [i0,5iJ) = 1. The next interval, then, has negative curvature
and p(Kr,[Ii,5 2J) = -1. Since zeros of curvature must pair up. P,[.,,g.+1]) - -1. In short,
P(K, [-i, i+ 1 ) = (-1)i. Therefore,

0 - (-;)i0,(;+,)- ,(41

inc i=c

- D-1YA,(J) + D(-V)'80()
i=1 im0

= (-1),(v) + t(-),(.oi)'I ilc

= 2 (-c )8(4
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2 E(-1)'j6,(i,)x,(i,)
i=o

Now, since xj(iL3) has sign (-1)' if < 0, then

S<0

so that
(t) < (0).

However, if = 0, such as the case with = 1,

x(t) =

Remark 3.
In conclusion, convex curves remain convex and r(t) = 2r for all deformations. For nonconvex
curves and P = 1, we have i(t) = X(0). Note therefore that for all curves, the deformation 0 = 1
does not alter the total absolute curvature. Finally, for nonconvex curves and deformations for
which A, < 0, such as = 1 - ex with e > 0, we have

P(t) < (0).

This describes the important role of e in the deformation as one of reducing the total absolute
curvature. Note that for P = -ex, the deformation will evolve an embedded curve to a circle
[Gage and Hamilton, 1986; Grayson, 19871.
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4. How Far Can a Curve Travel?

In this section we will address the key issue of how far the evolved curve can be away from the
initial curve. First we derive a relationship between the distance of a point from a curve and
the curvature of the curve at the nearest point. Second, the rate of change of distance of a
point to a curve is related to the speed of the curve at its nearest point. This result holds for
nonshock points. Third, the distance of a point from a curve bounds the rate of change of that
distance with time. Fourth, we show that a curve can not travel too far pointwise. Fifth, for
any time neighbourhood for which the curve does not travel beyond E, we constrain its expansion
as a function of time. From these we conclude that two curves dose in time are dose in their
Hausdorff distance. Finally, a theorem shows that the limit of curvature evolution exists, and
using the above we can even bound the total Gaussian curvature.

4.1 On the Distance Travelled

In what follows we will limit ourselves to the case

For a subset S C R2, let N(S) denote a dosed 6-neightborhood. Define the signed distance
of a point from a curve (regarded as a point set in R2) as

44, C0 f inf{d(p,q)lq E C} if p is outside C
-inf{d(p,q)lq E C } otherwise,

where outside is the region to the right of the curve as one traverses the curve in the positive
orientation. In this section we will consider an arbitrary point in the plane, p, and consider its
relation to the curve a. Set

d(t) :=d(pCt)

LEMMA 4.1: Let p V C be a point in R2. Let q be the closest point on the curve to p. (Note
that q exists by compactness.) Then,

I(q) > ;) ifpis outside C
{ -:5 if p is inside C.

Proof. Set d = d(p, q). First suppose the point p is outside the curve, so that d > 0. Let q
be the dosest poin on the curve C to p. Consider the circle of radius d and center p which is
tangent to the curve at q. We have two separate cases: (i) the curve has non-negative curvature
at q. In this case, x(q) 2! A, trivially. (ii) the curve has negative curvature at q. In this case, the
curve C lies entirely outside the arcle. In order to see this suppose to the contrary; then there
exist points on C closer to p than d, a contradiction. Therefore, the curvature of the circle L is
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greater than the curvature of the curve at q, i.e. 1> -K(q). Therefore, for both cases when the
point p is outside the curve C, we have

x q) > -1

Now, as required suppose the point p is inside the curve C, d < 0, and q the closest point
of the curve C to it. Again, consider the circle of radius -d and center p which is tangent to
the curve at q. Once more we have two cases: (i) the curve has non-positive curvature at q.
curvature. Trivially, then tc(q) < A. (i) the curve has positive curvature at q. In this case, the
circle again ies entirely within the curve, touching it only at q, so that, the curvature of the circle
7I is greater than the curvature of the curve ic(q). Then,

x(q) _< -1-.

LEMMA 4.2: Let p be a point in R2 where C deforms along the normal according to (1.3).
if AL can be bounded, then

99

Proof. Let q(s, t) be the dosest point to p on Ct and q(s + bs, t + bt) the dosest point on
C(., t + 6t) to p. Since the line (p, q(s,t)) is normal to C1, the point q(s, t + 6t) is on this line
a distance -6t from q(s, t). Consider the triangle with vertices p, q(s, t + bt), q(s + 6s, t + 6t),
where the angle at p is d.noted by MO. Then,

dkt + bt) - d(t) 1 ![(d(t) - fbt) - d(t)]
.Si bt cos(b9)

1 2 c-[2d() sin 2(b12) -
sin=(60/2) 8

= - 2d(t)s W
cos(be)bt -o~e

In the limit, 6t - 0, 69 -- 0. From the equations for rate of change of orientation with sin
Section 2,

Dtg

Since 9t can be bounded
DC

Remark 4. Observe that as t aproaches the time of shock formation, g(s, t) goes to zero, and
therefore the condition of Lemma 4.2 do not hold in the limit. -

LEMMA 4.3: Let C be a solution of (1.3) where P(K) = 1 - ex. Let p be a point in R2 . If
4t) = akp,C,) < e, then,

(t)d(t) > -2c.
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Proof. Let q(t) be the closest point on the curve Ct to p. First, consider the case where the
point p is outside the curve Ct. Then, by Lemma 4.1, x(q(t)) 2: -'. Consequently.

d'(t)= f - 1

-d(i)

-2e

since d(i) is positive and d(i) < c. Hence wecan conclude that

df(t)d(t) : -2e.

Now, consider the case where the point p is inside the curve which implies c(q(i)) !5~y Then,

drft)= e - 1

-d(t)

<-2c

since 4t) is negative and dQt) !5 e. Once again, w can conclude that

J(t)d(i) > -2e.

1

LEMMA 4.4: Consider a curve Co evolving through a function of curvature as in (1.3), with
fli)= 1 - fx. Then for each c, there evists 1 (e, Co) > 0, such that for each p E C1 w4th

o< < 1w have that

Proof. Let p E C1 for some 0 5 1 < E. Note that 1 - ex(q(t), t) is the speed of the point q(t)
on C, in the evolving family. Now since ,x(., ) is a periodic solution of a polynomial reaction-
diffusion equation with analytic coefficients and smooth initial condition, there exists an interval
[0,i1 such that x~a,t) is uniformly bounded as a function in t say by M. Therefore on [0,t11

11 - "~(qt), t) 15 1 + f-M.

Thus any point q(0) E Co cannot have travelled more than distance e from C. in time

set
I=nin(il,t2).
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Since p E Cj for some 0< f< , the lemma is proven. I

THEOREM 4.5: Consider a curve Co evolving through a function of curvature as in 1.3 with
0(r) = 1 - ex. Let T= (e, C) be as in the previous lemma. Then

C, C Nvit(Co),

for all tE [0, q.

Proof. LFrom Lemma 4.4, given e there exists T such that for all t E [0, fl and for all p E Cj we

have
d(t) = d(p(i),Ct) < .

Now, by Lemma 4.3,

1 2 t ()d() > 2e,

for all t E [0, fl. By integration Jd() < r4,

Hence, we have shown there is T such that for t E [0, fl we have

Cj C Nv-C(CO).

Remark 5. For dH the Hausdorff metric defined on compact subsets of R2 , from the above

theorem we have that
dH(Ct,C) < %4.

4.2 Umits of Classical Solutions

LEMMA 4.6: Let Cj : S' -4 R2 be a family of C2 functions with uniformly bounded length-

squared L(2)(t). Then, C is uniformly equicontinuous.

Proof. The lemma is a simple modification of the result for functions with bounded derivatives.

Note that C(s,t) -C(so,t) = j-doC

Therefore if L is the uniform bound on the length-squared

IASI( )- 4(I) 1 /<



4. HOW FAR CAN A CURVE TRAVEL? 18

S 2 + (_)_2] 1/2 - _.1

that is, the family is equicontinuous with H61der constant L and exponent 1/2. I

THEOREM 4.7: Consider a curve Co evolving through a function of curvature as in (1.3).
Then, lim,, =C',

in the Hausdorff metric. The curve C* regarded as a mapping C* : S1 --+ R2 is Holder continuous
with exponent 1/2.

Proof. Since the lengths-squared of the curves Cj are uniformly bounded (see Lemma 3.1 and

Remark I(ii)) regarding each C, : 1 R2, we can apply the Lemma 4.6 to the family

{Ct }tE[0,']

to conclude that it is equicontinuous. Moreover from Theorem 4.5, the curves lie in a compact
region. Thus by the Arzela-Ascoli theorem and the proof of Lemma 4.6, there exists a uniformly
convergent subsequence C, -+ C*, where C* : S1 --+ R2 is a H61der continuous function with
exponent 1/2. (The H61der continuity of the limit follows from the fact that the family is
equicontinuous and H61der continuous. C' will also denote the corresponding curve.) Thus as
compact subsets of the plane, we have that Ct, --+ C' in the Hausdorff metric.

To complete the proof, we need to show that all the Cj -, C' (in the Hausdorff metric) as
t -+ t. Let 6 > 0, and choose t. such that

C,. C N5/2(C')

and
62In >l' 1-.

16-c
(We choose 6 > 0 sufficiently small so that t' - > 0.) Note that for all t E [tt'), we have

62t-R < j •

Therefore, by Theorem 4.5
Ci c NV,-.j(Ct,),

C, C NS,(Ct.),

C, C N6(C'),

as required. I

Remarks 5.
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(i) Note that since C" is Hlder continuous, and since the total Gaussian curvature of the family
is uniformly bounded (see Lemma 3.2.1), C" will have finite total Gaussian curvature.
(ii) From the above results, we have a fairly complete picture about the the classical evolution of
a family of curves with

In a future paper, we would like to study weak solutions of this family (after possible shock
formation) with an emphasis on the physical applications to vision.
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Abstract

We present a new approach to effect the transition between local and global represen-
tations. It is based on the notion of a covering, or a collection of objects whose union is
equivalent to the full one. The mathematics of computing global coverings are developed
in the context of curve detection, where an intermediate representation (the tangent field)
provides a reliable local description of curve structure. This local information is put together
globally in the form of a potential distribution. The elements of the covering are then short
curves, each of which evolves in parallel to seek the valleys of the potential distribution. The
initial curve positions are also derived from the tangent field, and their evolution is governed
by variational principles. When stationary configurations are achieved, the global dynamic
covering is defined by the union of the local dynamic curves.

1. Introduction.

One of the key ques.tions in computational vision is how to effect the transition from
local representations to global ones. For example, edge operators give an indication of local
edge position and orientation; how can they be threaded together into a global contour?
A popular solution is commonly called "edge following" or contour tracing [Ballard and
Brown, 1982; Levine, 19851 and it works as follows: from a starting edge position, move
in the direction indicated by the orientation until the next edge point is encountered, then
move in that direction, and so on until the final point is reached. But such algorithms are
inherently sequential, and result-in myriad "garden paths" if any errors or noise are present.
Global parameters, such as starting and ending points; total number of edge points; or
total contour length, aid in their application, but are rarely available (except through user
interaction, e.g., Kass, Terzopoulos, and Witkin, [1987)). To make matters worse, inferring
global parameters, such as the total length of a curve, raises problems as difficult as global

1 Research supported by the Natural Sciences and Engineering Research Council of Canada and the Air
Force Office of Scientific Research

2 Fellow, Canadian Institute for Advanced Research
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2. Overview of the algorithm

curve detection itself! Other methods, more sophisticated than simple edge following, been
developed in an attempt to apply global constraints, and include minimizing properties
such as contrast variation along the curve, total curvature [Montanari, 1971: Martelli. 1974j.
smoothness across scale space [Lowe. 1988,. energy within plate and membrane models [Blake
and Zisserman. 1987: Terzopoulos. 1986]. or applying top down information [Tsotsos. 1987
- Draper ft al.. 1989]. However. few of the objects in our visual world are made from bent
plates. and generally problems arise in verif.ing when such constraints are valid globally. It
is almost as if the cart is being put before the horse, in that (hypothetical) global information
is being used to force local decisions.

In an attempt to turn this situation around, we introduce a new class of algorithms
for synthesizing contours from local representations of their differential structure. These
algorithms are inherently parallel and are natural for vision applications. The mathematical
idea behind these new algorithms is to compute properties of global structures indirectly
by computing a covering of them. Loosely speaking, a covering of an object is a collection
of different objects whose union is equivalent to it. In our case, we shall define a covering
of a global curve that consists in a collection of short, overlapping curves. Each of these
derives from a local representation of image information (which we call a tangent field) and
then evolves like the "snakes" of Kass et. al [19881 according to a potential distribution also
derived from the tangent field. But unlike standard "snakes", ours are local objects; it is
their union that comprises the cover. Each element of the cover evolves dynamically and in
parallel, and no external global information is required. It is all available by construction in
the potential distribution. For these reasons we refer to our representation of global curves
as dynamic coverings.

The idea of computing dynamic coverings developed in a biologically-oriented project of
curve detection, a brief overview of which is provided next (see also [Zucker, Dobbins and
Iverson, 1989]. Within this context, the key to computing dynamic coverings is to impose
two representations between the image and global curves: a tangent field and a potential
distribution.. The tangent field (defined in Sec. 2) represents the local properties reliably, and
the potential distribution puts them together globally. These intermediate representations
thus break the enormous gulf between images and global contours into more manageable
"chunks", and represent another key difference between our approach and other recent ones
[Kass et al, 1987; Blake and Zisserman, 1987]. We infer the tangent field from the image, and
then build the potential distribution and snakes from it; other researchers attempt to build
the potential distribution directly from the image. We can actually calculate the generators
for the potential distribution from the equivalence class of curves that map into each tangent
field entry.

The paper is organized as follows. Following the overview of our approach to curve
detection (Sec. 2), we develop the preliminary notions of potential distributions (Sec. 3)
and deformable curves (Sec. 4). We then get to the heart of the paper in Sec. 5, where the
precise definition of a global covering is developed. Examples of the dynamic computation
of global coverings are finally shown in Sec. 6, for both artificial and natural images.

2



2. Overview of the algorithm

2. Overview of the algorithm

The algorithm for curve detection consists of two distinct stages, the first leading to a
coarse description of the local structure. of curves, and the second to a much finer, global
one [Zucker. David, Dobbins, and Iverson., 1988].

2.1 Stage 1: Inferring the tangent field

Orientation selection is the inference of a local description of a curve everywhere along it.
Formally, this amounts to inferring the trace of the curve, or the set of points (in the image)
through which the curve passes, its quantized tangent and curvature at those points, and
the discontinuities [Zucker, 1985]. Through all this work, we will refer to such information
as the tangent field.

This first stage of orientation selection is in turn modeled as a two step process:

Step 1.1. Initial Measurement of the local fit at each point to a model of orientation and
curvature. The form of the initial measurements is biologically motivated, and a model
of endstopped simple cells, which encode both the orientation and curvature estimates
[Dobbins, Zucker, and Cynader, 1987] is used to perform them. The local measure-
ments are quantized into discrete classes of orientation and curvature. However, since
the local measurements are inherently inaccurate, we require

Step 1.2. Interpretation of the local measurements such that they become globally con-
sistent. Curvature, which relates neighboring tangents, is used to define a natural
functional to be minimized in order to attain consistency [Parent and Zucker, 1989;
Iverson and Zucker, 1988]. Relaxation labelling [Hummel and Zucker, 1983] provides
the formal framework for this.

A complete treatment of this first stage can be found in Iverson [1988).

At the end of the first stage, the tangent field gives the discrete trace of the curves in an
image. The two steps above are necessary to guarantee that it contains reliable information.
More precisely, the tangent field is a set of n 3-tuples,

{((xi, Yj),0j, Ki) I (zi, yi) E I, Oi E 0, xi E K}

t= 1,...,n, where n is the number of trace points in the image I, (zi, yi) denotes the
(quantized) grid coordinate of the ith trace point indexed over the image I, and Oi and
oci are its quantized orientation and curvature, respectively. Typically, 0 consists of eight
orientation classes, and K of five curvature classes (see Fig. l(a)). Thus the tangent field

3



2. Overview of the algorithm

summarizes the local differential properties of curves in what Zucker [1987] described as a
qualitative manner.

Two topological properties of the tangent field are important: (1) each curve in the
image is represented as a connected (in the discrete sense) set of tangent field entries: and
(2) discontinuities. intersections and bifurcations are represented as multiple tangent field
entries at identical coordinates. To elaborate on (1), recall that, except on the border, each
point (x. y) of a (digital) image has four horizontal and vertical neighbors, and four diagonal
neighbors: these eight points are called the (3x3) neighborhood of (x, y). A chain between
two points (xi, yl) and (x2, Y2) is a sequence of points where the first one is (zl, yl), the last
one is (x2, Y2). and each point of the sequence is in the neighborhood of the preceding one.
A set of points of an image is then said to be connected when there exists a chain between
any two points of the set [Rosenfeld and Kak, 1982]. For an elaboration of (2), see [Zucker
et a., 19881.

2.2 Stage 2: Inferring a covering of the curve

Since the tangent is the first derivative of a curve (with respect to arc length), the global
curve can be recovered as an integral through the tangent field. Such a view typically leads to
sequential recovery (numerical integration) algorithms.(e.g., contour following). But these
algorithms. require starting points and some amount of topological structure (i.e., which
tangent point follows which), and there are immense difficulties inherent in obtaining these
parameters directly from the image. Moreover, because we are interested in biologically
plausible models, we shall require that all the algorithms be parallel.

The key idea behind our approach is to recover the global curve by computing a covering
that is sufficent for obtaining any global properties of the curve required for subsequent
visual processing. The elements of the covering are short curves, initially born at each
(discrete) tangent location with unit length, but which then evolve according to a potential
distribution constructed from the tangent field. Thus the algorithm that we are proposing
can be viewed, mathematically, as approximating the computation of integral curves through
a direction field in a parallel manner with very non-standard initial conditions (provided, of
course, that multiple entries at the same position are properly interpreted).

Again, there are two conceptually distinct steps to Stage 2 of the algorithm:

Step 2.1. Constructing the Potential Distribution from the discrete tangent field. Assum-
ing that each tangent in the tangent field gives a coarse hypothesis about the behavior
of the curve in its neighborhood, for each tangent field entry we represent this class
of hypotheses by an elongated (in the tangent direction) 2D-Gaussian. This weight-
ing function indicates the (equivalence) class of curves which project to each tangent
field entry in extending the discrete tangent in both length and width. The poten-
tial distribution is the pointwise summation of these n (one per tangent field entry)

4
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(a) (b)

Figure I Illustration of the two intermediate structures between the image and
the global curves: the tangent field and the potential distribution. The image is
a section of a fingerprint image, where each individual pixel is shown as a little
block. (a) The tangent field, superimposed onto the original image. Each tangent
is represented as a unit length straight line in the tangent direction (curvature is
not displayed). (b) The potential distribution, computed from the discrete tangent
field by pointwise summation of elongated 2D Gaussians. Notice the presence of
smooth valleys, corresponding to the curves in the image.



3. The potential distribution

Gaussians. The key feature of the potential distribution is the presence of smooth
valleys, constructed by summation of nearby Gaussians. These valleys indicate, with
theoretical continuum precision (although the implementation is limited to machine
precision). the expected positions of the curves in the picture (see Fig. l(b)). The
construction of the potential distribution thus effects a transition from a local to a
global representation of structure and shape.

Step 2.2. Curve Dynamics. The valleys of the potential distribution are located by dy-
namic unit-length curves, born at each tangent position in the tangent field. They
evolve according to a variational scheme that depends on curve properties (tension
and rigidity) as 'well as on the potential distribution. The evolution takes two forms:
(i) a migration in position to achieve smooth coverings at subpixel accuracy; and (ii)
a growth in length such that nearby covering elements overlap; see Fig. 2. At the end
of the migration process, we shall have that each valley is completely covered by this
collection of curves, and each curve will have deformed itself to fit the exact shape of
the valley. We call this collection of curves the global covering of the curves in the
image.

The dynamic curves of the second stage are a generalization of "snakes" [Kass, Witkin
and Terzopoulos, 1988]. The key differences between our approach and theirs are twofold:
(i) our scheme is parallel, so questions about total length, boundary points, etc., are handled
implicitly; and (ii) our scheme is constructive, with the potential distribution computed
directly from the tangent field, so questions about features, degree of image blurring, etc.,
are handled explicitly. We must neither have a user supply information interactively, as e.g.
Kass et al. were required to do, nor, to avoid smoothing across discontinuities, do we have
to distribute penalties globally, as e.g. Blake and Zisserman were required to do. Imposing
stable intermediate structures-the tangent field and the potential distribution (see Fig.
1)-between the image and the global curves was the key, and the mathematical notion of
coverings provided the unifying structure.

We now proceed to develop the notions of potential distribution and dynamic curves,
before putting them together into global dynamic coverings in Sec. 5.

3. The potential distribution

The local descriptors in the tangent field are synthesized into a global description rep-
resented as a potential distribution. In this Section we first articulate this construction
process, then define a mathematical notion of a valley in the potential distribution. Since
valleys are intended to be the locus of points that represents (the trace of) a curve, finally
we show that, for simple potential distributions, these valleys do indeed correspond to the
global curves.

6
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Figure 2 Illustration of how the collection of short dynamic curves evolve to cover
the locus of points comprising the valleys in the potential diectribution. In the
usual order, the covering elements migrate from their initial positions (top left) to
reach the bottom of the valley indicating the edge (bottom). Note the two aspects
of the movement: a migration, and a length increase.



3. The potential distribution

3.1 Constructing the Potential Distribution

The tangent field. consisting of discrete trace. discrete tangent, and discrete curvature.
gives, at each trace point, a coarse estimate of the local behavior of curves. Since each
tangent field entry corresponds not to a single curve in the world, but rather represents
the equivalence class of possible curves that would project onto this tangent field entry, we
represent this (local) equivalence class of possibilities by the (Gaussian-weighted) Wiener
measure over them. The Wiener measure (a Gaussian distribution) arises because the class
of continuous (but not necessarily differentiable) functions is equivalent to the sample func-
tions of a Brownian motion, and the Gaussian weighting along it is an approximation to
the diffusion of this measure in time [Doob, 1984). The result, then, is a two-dimensional
Gaussian distribution, and, since each entry in the tangent field is considered independently.
the total potential distribution is the pointwise summation of them.

More formally, the set of generators of the potential field is the set of 2D-Gaussians
{Gi : i = 1,...,n}. For each trace point i,. Gi is obtained by the multiplication of two
1D-Gaussians, one in the direction of the quantized tangent at this point, and another one
(with smaller deviation) in the perpendicular direction. Thus, at a trace point i = (xi,yi),

with tangent Oi

Gi (x, y) = - (KEe- EY~i)/) (KBj(i B)~~)2 /
= -KEKe-( (i )-)2z /, E) e-((gi(z_,)-i_) 2/ 4 ) (1)

where the functions fi(x, y) and gi(x, y), which rotate the x and y axes to the axes indicated
by the 6i and 9i + " directions respectively, are given by

fi(x,y) = x i + (x - xi)cosOi + (y - yO sinOi

gi(z,y) = yi - (x - xi)sinOi + (y - yi)cosOi.

The parameter GE, which is the standard deviation of the ID-Gaussian in the 0i-direction,
controls how far the local information given by the tangent 6i is extended from the trace
point (zi, yi). The parameter aB, which is the standard deviation of the ID-Gaussian in
the (6i + ')-direction, controls the width over which the extended information is valid. For
these reasons, we shall refer to the parameters G E and GB as the eztension parameter and
the blurring parameter, respectively, and KE and KB are (positive) weights associated with
each of the 1D-Gaussians. Figure 3 presents a plot of the resulting 2D-Gaussian.

The (tangent field) potential distribution, UTF, is then the pointwise summation of the
Gi:

UTF (x, Y) = Z (x,=y)
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(a)(d

Figure 3 3D plot of Gi(z, y). Note that the resulting Gaussian is elongated (in the
ei-direction) since OE > OB

9



3. The potential distribution

It should be noted that each generator Gi, as defined, is a function of the tangent estimate
alone, with the curvature estimate negligible. The curvature could be used if curved, 2D
Gaussians G' were defined for each tangent field entry i. G' would then be a Gaussian
along a curved axis of curvature Ki in the Oi direction. multiplied by another Gaussian
perpendicular to the curved axis. However, the potential distribution U' obtained by
pointwise summation of these G'. which is

n

-1
LJ.F (x, Y) G G(x, y)

would be very similar to UTF for the following reasons. First, the curvature is only retrieved
in a very coarsely quantized form by the first stage of the curve detection process, so the
generators G' would be only weakly tuned to curvature. Second, extending and summing
the tangent information implicitly gives curvature, which is a relation between neighboring
tangents. Thus, theoretically there appears to be no need to use curved Gaussians, and
experimentally, potential distributions computed with straight Gaussians yielded smooth
curved valleys.. Figure 4 shows examples of potential distributions and of these valleys.
where one can see that the result is a smooth "landscape", in which the jaggies due to
sampling, noise and quantization have been removed 1

Recall from the introduction that the key feature of the potential distribution is the
location of the valleys, since it is to the valleys that the covering elements migrate. Thus
we can now state the claims behind this paper: (i) the valleys in the potential distribution
correspond to smooth curves, and (ii) the set of quantized tangents of these smooth curves
is precisely the tangent field used to construct the distribution. Moreover, over all the pos-
sible sets of curves which would project onto this tangent field, the valleys of the potential
distribution give the most probable ones, in the sense of Wiener measure.

The rest of this Section is devoted to an analysis of the potential distribution character-
istics, in order to prove the above claims. This analysis also results in a design criterion for
the blurring parameter, which insures that separate curves remain separate.

The analysis is conducted for C1 (i.e. continuous with continuous first derivatives) and
non-intersecting curves, however some of the tangent fields used in the experiments contain
intersecting curves and corners (in particular, see Figure 8). Other research is currently
in progress to deal with intersecting curves and tangent discontinuities, by extending the
potential distribution to a branched potential distribution; it will be reported in a separate
paper

1 Further computational experiments in which curved (G') generators were used led to final results vir-

tually indistinguishable from. those shown in this paper.

2 Even if no specific treatment is performed at intersecting points and tangent discontinuities, the present

10
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3 The potential distribution

3.2 Valleys in the potential distribution

We now introduce the concept of a valley, the locus of points toward which the elements
of our covering migrate. To begin, given a direction v. making an angle 0 with the positive X-
axis, we define a o-valley of the potential distribution UTF(x. y) to be a connected component
of the set

{(x.y) : V(,+'.)UTF(xY) = 0, ( .TF(z,y) > 0},

where 70f(z. y) and 79f(r, y) denote respectively the first and second directional derivative
of f in the direction given by the angle 0. More generally, a valley of the potential distribution
UTF(x, Y) is a connected subset of the set

{(.OY) 7 = 0, UTF(x,Y) > 01

where 0 = 0(z, y), i.e. the angle 0 can vary with the coordinates z and y. A 0-valley is then
a "straight" valley in the direction 0.

The idea behind the concept of valleys is that of "directional minima". While local
minima are points of a valley, points of a valley are not (necessarily) local minima of the
potential distribution. The condition for a point (z, y) to be a local minimum of UTF is that
VOUTF(x, y) = 0 and V72UTF(x, y) > 0 for all directions 0. The definition of a valley is thus
weaker than the definition of a local minimum, and points in the valleys are minima with
regard to a single direction, namely the direction given at each point by the angle O(x, y).

3.3 Analysis of potential distributions

The analysis of the two simplest potential distributions, namely a single Gaussian, or
perfectly aligned Gaussians, is simple and shows that the valleys are 4-valleys (where 4) is
the direction of the Gaussian) corresponding to the most probable smooth curve indicated
by the tangent field. The formal treatment of those cases can be found in [David and Zucker,
1989].

In order to achieve this result for a more general potential distribution, we consider the
case of two parallel Gaussians (this also leads to a criterion on the blurring parameter of the
Gaussian weighting functions which insures curve separation).

Observe that, when the potential distribution is generated by several Gaussians that
are in general position, we require the potential distribution to be such that: (1) Nearby
tangent field entries which lie along the trace of a unique curve must form a unique valley,
corresponding to the most probable position of the curve, and (2) Nearby tangent field

of the fingerprint image is correctly retrieved (see Figure 8). But further analysis would have to be done

in order to insure the validity of the results in the general case.
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3. The potential distribution

entries belonging to two nearby curves must not be blurred together, and must give rise to
two separate valleys.

These two requirements are sufficient to insure curve separation, since the curves are
found by a migration of covering elements. born at tangent field entry positions. over the
potential distribution (see Section 2.2). Then. in the case of tangent field entries belonging
to different curves, the migration will stop as soon as the covering elements each drop into
their surrounding valley. Hence, possible additional valleys between the two positions will
never be found if two valleys exist sufficiently close to each one of the original positions.

We now concentrate on the second observation above, namely that nearly curves give
rise to distict valleys. This leads to our design criterion for aB . Again consider only two
interacting Gaussii .s, but from a tangent field consisting of two parallel and vertical (i.e.
01 = 02 = .) tangents, with identical y-coordinates. Then, UTF = GI (x, y) + G2 (x , y), and
using 1 = 02 = Y = Y2 in Eq. 1, we get

G(x, y) = -KEKBe -  E)2/)e- B(e2

G2 (x, y) = -KEKB e (2)

(see Fig. 5).

We now look for the -valleys of UTF in this particular case. From now on, and without
lost of generality, we assume xl < x2. The critical points (for the -valleys) are those

where V UTF = 0, or equivalently, those where y-UTF(x, y) = 0. Computing the partial

derivative, we obtain

2KE KB e 1(Y Yl)2/22
2E32 (X - XI)e - ( z  )/ + (z - z 2 )e-(Z-z2) /01J =

or, since first term of the product is always strictly positive,

(x - X, )e- (Z-)/B + (x - x2)e(x- z 2) /O0B = 0. (3)

Then, by positivity of the exponential function, any solution z of Equation 3 is in the
ope i interval (xl, X2). Also, Equation 3 depends only on Ax = X2 - xj and aB: Without
lost of generality, set xI = 0; then x2 = Ax and F(x1, x2, aB) becomes

Xe-2B + (x - Ax)e( B (4)
which depends only of Az and aB, and which we denote F(z) for short.

Observe that the points (X, y) belonging to the '-valleys of UTF are entirely characterized
by the function F(x) 1. More precisely, it can be shown that (xo,yo) belongs to a f-valley

of UTF if and only if F(xo) = 0 and kF(xo) > 0.

I Note that this also means that the presence of the f-valleys does not depend on the y coordinate.
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3. The potential distribution

(a) (b) (c)

Figure 5 (a) The tangent field, consisting of two entries with e1 = 02 = ad
yl = y2. (b) . potential distribution obtained from (a) choosing OGE = 2.75,
GB = 7 = 0.6875, KE = KB = 1. This Gaussian separates the tangents into two
different valleys. (c) A potential distribution obtained from (a) choosing GE = 2.75,
GB = R ft 1.83, KE = KB = 1. This Gaussian blurs the tangents into the same
valley.
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3. The potential distributiot

A condition to separate cases (b) and (c) of Figure 5 relates the distance Az between the
two Gaussian operators and the blurring parameter a'B . More precisely, it can be deducec
from last result [David and Zucker. 1989] that the vertical straight line z = is a ,-vallev

of UTF if and only if Ax2 < 2a2

To summarize, the key structural properties of the potential distribution are:

(i) When !x 2 < 2a 2 , the valley at x - is unique.

(ii) When A > 24 so that : = -r becomes a maximum, two valleys are created, one

at x = x: t xi, and one at x = :z x2. Also, the valley at x = is lost. The
slight variation in position from xl and x2 arises because of a weak interaction betweeL
nearby Gaussians; see David and Zucker [1989].

(iii) When Ax becomes large, the distances (x* - x1) and (x2 - x*) become small.

(iv) When aB becomes small, the distances (x1 - zi) and (x2 - x*) become small.

The preceding analysis thus indicates that the valleys in the potential distribution have
precisely the properties required for synthesizing global curves from the tangent field. Before
proceeding to the study of dynamic curves for locating these valleys, we extend one aspect
of the preceding analysis into a constraint on the parameters controlling the Gaussian gen-
erators.

3.4 Design criterion: Blurring parameter

Continuing the particular case of preceeding Section, we know that two (vertical and
parallel) tangent field entries give rise to a unique valley when Ax 2 < 2A0, and to two

2 2 B,
separate valleys when Ax 2 > 2a4. Recall from the introduction that image curves are
represented in the tangent field as connected sets of tangent field entries. Thus, when two
(parallel and vertical) tangent field entries each occupy overlapping (3x3) neighborhoods.
they belong to the same curve, and when they are separated by at least one empty pixel.
they belong to different curves 1. Then, any value of the blurring parameter such that

2 2 2 1
12 < < 22 or I<aB< (5)

insures that the two tangent field entries give rise to separate valleys if and only if they
belong to (locally) separate curves.

I Or, they belong to different parts of the same global curve, i.e. there is a chain somewhere between the

two tangents. But locally, they must be viewed as separated.
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4. Valley detection

More generally, it is clear that many other relations (in position and orientation), apart
from the particular cases just studied, are possible, and lead to similar inequalities. For
example. consider two parallel tangent field entries with 0 = . These entries are then
located at diagonal pixels and this case is just a rotation of the preceding one. But now, the
distance between two neighboring tangent field entries is the distance across the diagonal.
i.e. V2. Thus, any value of aB such that

< < (2 )2  or I < aB < 2  (6

insures separation of (locally) disconnected sets of tangent field entries, and only of those
sets. We submit that these two cases are typical of the general one, and summarize the
analysis by saying that when

(i) the analysis is restricted to non-intersecting curves;

(ii) curves of the image are represented as connected sets of tangent field entries;

(iii) the choice of aB is made according to Equations 5 and 6;

we obtain that

(1) Each connected component of the tangent field will give rise to a unique valley, built
from the interaction of all the tangent field entries of the component; thus, the valley
indicates the position of the most natural curve which projects onto the connected
component of tangent field entries.

(2) Different connected components of the tangent field will be separated into distinct
valleys. These valleys are not completely independent since there is a weak attraction
between nearby valleys [David and Zucker, 1989]. But this attraction is non-negligible
only for very close curves (a few pixels).

Experimentally, it will be shown in Section 6 that any reasonable value of aB relative to
Equations 5 and 6 (say between 0.75 and 1.5) ensures that the two above claims are verified.

4. Valley detection

From the tangent field, we derived a potential distribution in which the valleys indicate
the position of the curves in the image. We are now ready to identify these valleys to obtain a
precise description of the curves. Since the valleys are, by definition, connected loci of points
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4. Valley detection

that are not all minima of the potential distribution, standard minimization techniques are
not adequate. Rather. we use short segments of curves to capture these loci, and we define
a process by which the curves migrate into the valley. Together these segments will define
the global covering. Figuratively. the process works as follows. Suppose that we are given a
rough approximation of where a valley lies in the potential distribution. Now, if a curve is
placed at this approximate position. within a potential well and parallel to the valley, and
let slide as if it were governed by a kind of gravity, then it will slide toward the bottom of
the well; i.e.. the valley. Moreover, if the curve is not completely rigid, it will deform itself
to fit the exact shape of the valley. Then, at the end of the process, when "gravitational"
stability is attained, a description of the valley is given by the associated curse. This is
precisely what we shall do.

Note that the above mechanism relies on the fact that we have a good initial approxi-
mation, in position and orientation, of each valley. If we place a piece of curve randomly on
the potential distribution and let it evolve under "gravity", the final position of the curve
could be meaningless in terms of valley detection. More likely than not, the curve would
span several valleys. Our initial approximation is given by the tangent field, and the wells
by the Gaussian generators. It is analyzed more carefully in Sec. 5. In this Section, we
develop the variational principles that govern the dynamics of each deformable curve indi-
vidually; the global cover will then be computed by running all of these dynamical processes
in parallel. For now, we focus on one element of the cover, and suppose it exists at some
(initial) position on the potential distribution. We then develop a mathematical model to
govern the movement of the curve, basically following that adopted for snakes ([Kass, Witkin
and Terzopoulos, 1987]; [Terzopoulos, 1987a and 1987b]), by applying classical mechanics to
deformable curves.

A deformable curve v is a differentiable map v : R2 J R 2 . We write v(s, t) =
(z(s,t),y(s,t)) with s E fl the space domain, and t E [t0 ,tl] the time domain. We de-

note &v(s,t) by vs(s,t), a-v(s,t) by vqs(s, y), and &v(s,t) by vt(s,y).

We now define the potential functional Ut (v) of a curve v, where the superscript indicates
that the potential functional is computed at each time t. This corresponds to the potential
energy of the curve. It is related to the potential distribution, but also includes internal
constraints on the curve (how the curve is allowed to extend and fold). These internal
constraints, corresponding to the physical concepts of tension and rigidity, must be added in
order to specify completely the movement of the curve. The potential functional of a curve
v at each time t is

Ut (v) f j f(Ivl1 2) + g(jvsoI2) + UTF(V)ds (7)

where UTF(V) is the value of the potential distribution at the point (z(s, t), y(s, t)), f(Iva 12)
controls the tension of the curve, and g(Iva.1 2 ) controls the rigidity of the curve. Among all
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5. The global covering

the possible functions f and g, we simply choose the natural ones

f(I s(s, t)12) = wl(S)I vs(s, t)12

f(Ivs (s. t)12) - u.2(s)t, &(s, t)!2

where wl and ,,'2 are constants over time. A method for choosing the constants is described
in Sec. 5: we will also see that these simple forms are sufficient to control the curve movement
for our purposes.

Now that the potential functional is completely defined, we can use the methods of
classical mechanics (principle of least action, Lagrange-Euler equations of motion) and obtain
a system of differential equations which describe the movement of the deformable curves.
Then, with known initial positions, these equations can be solved numerically. All details can
be found in [Terzopoulos, 1987-], [Terzopoulos, 1987b] and in the Appendix to this paper.

5. The global covering

We now proceed to put all of the previous pieces together. We infer the global curves
from the tangent field by recovering a covering of these curves. Each element of the covering
is a deformable curve that moves according to the model described in Sec. 4, within the
wells of the potential distribution described in Sec. 3. Of course, we require good initial
positions for the covering elements, so that, at "gravitational" stability, the curves will all
have moved into valleys, and we require that each valley be completely covered by curves.
In this Section, we precisely state what we mean by a covering of the global curves, and then
develop a particular covering to meet the above two requirements.

5.1 Curves and coverings

As a mathematical object, a plane curve v is a mapping from an interval I C R to R 2,
i.e.

v(s) = (z(s),y(.)) for 3 E I.

The set v(I) C R 2 is called the trace of the curve v.

Since our overall goal is applications in vision, we seek to recover the trace of each curve
as precisely as possible. Once this trace is available, it provides a basis for inferring all the
other curve properties that do not depend on the exact form of the mapping. This leads
us to consider equivalence classes of curves obtained by factoring the set of curves by the
equivalence relation given by the equality of trace. More formally, we propose that two
curves v : Iv --* R 2 and u : Iu -- JR2 are said to be equivalent if and only if their traces
coincide i.e. v(Iv) = u(Iu). But an image rarely consists of a unique curve, and we want
to study general classes of images. We thus say that two sets of curves U and V, where U
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5. The global covering

consists of the curves u :u JR2 and V consists of the curves v: v - R 2 , are said to be
equivalent if and only if

U u) = U V().

uEU vEV

Given a set of curves V, we denote the equivalence class formed by all sets of curves
equivalent to V by E(V), and any member U of E(V) is called a covering of the set V, or
is said to cover V. The elements of U (which are curves u : Iu - R2 ) are called covering
elements.

5.2 Construction of the global covering

We now develop one covering which enjoys natural representational properties. Recall
that reliable local estimates of the curve positions and orientations are given in the tangent

field. Now, consider each tangent field entry as a unit-length straight curve, and let these n
curves deform themselves according to the model already described. We then get the set C
of these n deformed curves, where each curve c E C originated from a tangent field entry. In
this Section, we will show that the set C is a covering (according to the above definition) of
the global curves in an image. Or equivalently, since the global curves are described by the
valleys of the potential field, we will show that each small curve c lies in a valley, and that

each valley is completely covered by curves of the set C. More formally, the global covering
of the curves in an image is the set C of the n curves

ci(z, t1) = (zi(s, t1 ),yi(s, ti)) i = 1,...,n

where at initial time to, each ci(s, to) is a straight line identical to the ith entry of the tangent

field, and at final time t1 , each ci(x,t1) is a dynamic curve that has moved onto a valley of
the potential distribution. Starting from now, the phrase "covering elements" will always

refer to the elements of the global covering. We now complete their dynamics.

5.3 Covering element movement

Recall from the preceeding Section that for each covering element c(s, t) = (X(s, t), y(s, t),
with s E 0, the potential functional is

Ul(c) = j.,1c12 + .21c, 812 + UTF(C)ds

JUTF(c)ds + n WIc 12 + 42Icoa12ds (8)

where the first term controls the migration of the covering elements toward the valleys, and

the second term controls how the covering elements are allowed to deform themselves during
the migration. We call this latter term the internal potential, and set it so that each covering
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5. The global covering

element increases its length to a prescribed length. The movement of the covering elements
is thus a two-fold process, consisting of a migration and of a length increase (see Fig. 2).
The details are as follows.

The internal potential of a covering element c(s,t) = (z(st)*.y(s,t)), with s E fr is

fWIcs I2 + L02Ics,12ds, (9)

where wl and w2 control tension and rigidity respectively. In fact, since the minimization of
(9) participates in the covering elements' movement, we observe that the covering elements
tend to decrease their length for positive values of w1, increase their length for negative
values of w1 , become straight or positive values of w2, and fold and curve themselves for
negative values of w2.

Given a prescribed mandatory length Lp, we set wi to be, at each time t, wl(c) =

f(L t (c) - Lp), where Lt (c) is the length of the covering element c(s, t) at time t, i.e.

Lt (c) = j Ics(s,t)tds fx 8 (s, t) 2 + ys(st)2 ds.

The function f is then simply a ramp function saturating when ILt (c) - LpJ becomes big.
It is easy to see that this choice achieves the desired result: a covering element c will tend
to extend when Lt (c) < Lp, and to shrink when Lt(c) > Lp. It should be noted that w1 is
independent of the parameter s, which makes the tension equally distributed over the entire
covering element length.

Although the presence of a rigidity term is essential to the process, its exact value is not
a key point, and it suffices to set it empirically within an order of magnitude to get good
results. It was experimentally verified that changing the rigidity parameter by a reasonable
amount does not change the results significantly (see [David and Zucker, 1989]). But the
rigidity parameter is essential to the algorithm, in order to prevent a covering element from
folding on itself while finding its optimal position, since the potential distribution and the
tension parameter do not prevent those movements. We simply set the rigidity parameter
w2 to a constant value, the same for each covering element, at all times, and over the whole
covering element length.

5.4 Properties of the global covering

Now that our model is completely defined, we can state and justify the claims made about
the global covering. The global covering C, formed by the n curves ci which originated from
the n tangent field entries, and which evolve according to Equation 8, is such that

(1) Each curve lies in a valley of the potential distribution.

(2) Each valley of the potential distribution is completely covered by curves of the set C.
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Claim (1) is met by construction, since the potential distribution was built from the
tangent field. i.e. from the curves' initial positions. Then, each curve is, at initial time,
within the well surrounding its associated valley, and the dynamics drive the curve onto the
valley.

The truth of claim (2) is based upon three facts: global curves project into the tangen"
field as connected sets of tangent field entries, the length of each covering element increase-_
during the dynamics. and there is no movement of a covering element outside the weL
surrounding its valley. By the last statement, we assume that all valleys have a similar
depth along their length, or equivalently, that the density of the tangent field entries Ir

about the same along the entire connected component. This is guaranteed by our restriction
to smooth non-intersecting curves.

Note that the diagonal length across a pixel (which is the maximal distance between two
neighboring elements of a connected set) is V'2 units; therefore, to guarantee that neighboring
covering elements overlap to give the global curves, we just have to let each covering element
extend in length to some value greater than V'2, since each covering element stays around its
initial position. Typically, a prescribed length of 3 is used, in order to guarantee the overlap.

Since the valleys of the potential field describe the global curves of the image, we also
get that the global covering is a covering of the curves in an image, i.e.

U coltI) U V(IV),
cEC vEV

where V is the set of the global curves of the image.

6. Results

We now illustrate the computation of the global covering, beginning with artificial images
to check the validity of the algorithm against known examples, and finally with natural
images to demonstrate its robustness.

The first test shows that simple analytic curves are retrieved quite exactly from the tan-
gent field information, i.e. that the "natural" curves indicated by the potential distribution
correspond to the expected ones. The image consists of two nearby circles, with different
radii, projected over a discrete sampling grid (Fig. 6(a)).

We simulate the first stage of the process (see Sec.2.1), which extracts the trace and
tangent of these curves in the following manner. Each square of the sampling grid traversed
by one of the circles belongs to the trace of this circle, and the tangent at each trace point
is computed assuming that the curve crosses the center of the square; afterwards, all the
computed tangents are quantized into eight classes (Fig. 6(b)). We then run our algorithm
on the simulated tangent field. This tangent field is the only information that the second
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•p I

(a) (b)

I ~ ~ ~ ~ V I I !] :

I I : : :

Figure 6 (a) Two nearby circles of different radaii lie over a discrete sampling grid
(25 x 25). Their projection onto the grid is given by those pixels traversed by one of
the two circles. (b) The tangent field for the two circles, consisting of the discretized
tangent at each trace point. Note that the tangents' positions also Correspond to
the covering elements initial positions. (c) From their initial positions shown in (b),
the covering elements have migrated into the valleys of the potential distribution,
where they attain stability. The parameters of this experiment are: aE= 2.75,
OB = oEl3 = 0.58, Lp = 3.0; wl is determined by R =1.0, K = 1.0, and W2 =1.0;
p = 2.0, -y = 2.0. (d) The final covering elements' positions, superimposed over the
initial curves.
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stage of the process uses to retrieve the global curves, the initial circles being lost by the
projection onto the sampling grid. The result is shown in Fig. 6(c) and (d). The curves
retrieved from the potential distribution correspond very accurately to the initial circles.
Also. the value of aB , chosen according to the design criterion, allows a clear separation
between the two nearby circles, separated by only two pixels on the sampling grid.

Finally, we run our algorithm on three natural images, a fingerprint image. a radiograph
of blood vessels in the brain, and a satellite image of logging roads. Since we are interested
in precise extraction of the curves, without blurring of very close curves, we choose to
experiment with small images so that details could be examined up close. Figure 7 presents
the original images, and the resulting global curves. An exploded display of the first two
tests is then presented in the last two figures.

7. Summary and Conclusions

In this paper we developed an algorithm for finding a representation of the global curves
in an image. The novel feature of this representation is that it is formulated in mathematical
terms as a covering, so that, rather than computing global curves directly, short segments
of curve are computed independently from one another. The short segments thus become
the elements of the cover, and global curves are given as their union. This enables us to
define the algorithm in a parallel fashion, and to avoid the a priori specification of global
parameters (e.g., the length of the curve).

Since the global representation is built up from local ones, the algorithm for comput-
ing global curves via coverings requires reliable local information about the curve. Within
our context, which is a large project on curve detection incorporating both mathematical
and biological constraints, this local information is provided by a tangent field, or a list of
(quantized trace) points through which the curve passes, together with coarse estimates of
its tangent and curvature at those points. The key point to emphasize here is that these local
properties need not be specified to high precision; the interpolation properties implicit within
the covering algorithm can deal successfully with coarse initial information. Thus the algo-
rithm fits into a very natural information processing hierarchy, with both degree-of-precision
and local-to-global axes spanned.

The local (tangent field) information is used in two different ways. First, a global de-
scription, in the form of a potential distribution, is synthesized from it. By definition, valleys
in this potential distribution correspond precisely to curve locations. These valleys are de-
tected by a dynamical process in which the covering elements are driven by the potential to
both migrate in position and elongate in length. The second use of the local (tangent field)
information is in specifying the initial positions for each covering element. Convergence is
thereby guaranteed by construction. Equivalence between the curves in the image and the
covering elements is demonstrated both theoretically and by example.
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Figure 7 Global curves of natural imagme. Top: A fingerprint image. Middle: A

radiograph of blood vessels in the brain. Bottom: A satellite image of logging roads.
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II oro=

(a) (b)

Figure 8 Illustration of the first experiment on a fingerprint image. (a) The initial

covering elements, at tangent field entries' positions. (b) Final positions of the

covering elements; clearly the covering elements have migrated into the valleys, and

have overlapped to form a covering. Also note that the bifurcation in the center of

the image have been recovered correctly, without special treatment.
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B I ' --

(a) (b)

Figure 9 The second test is performed on a biomedical image, a cerebral angiogram.
(a) The initial positions of the covering elements, corresponding to the tangent field
entries. This image is very noisy, and low contrast. The tangent field was computed
under the assumption that all vessels were of comparable contrast. (b) The final
positions of the covering elements. The region where nearby covering elements do
not overlap completely corresponds to a region where the tangent field was not
completely connected.
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Since the global curves are represented by a covering that evolves according to a dynamic
process. we refer to them as dynamic global coverings. Although we concentrated on smooth.
non-intersecting curves in this paper. additional research is in progress to guarantee the
validity of the results .in the general case. It works as follows. Since the tangent field
indicates curve intersections and discontinuities by multiple tangent field entries at the same
grid coordinate, the potential distribution is split into several "layers", one per tangent field
entry. in the neighborhood of each of those coordinates. Take, for example, the case of two

curves intersecting at a single point. The tangent field entries of those curves will give rise to
two independent layers in the potential distribution at this point, and the process described
in this paper can then be applied at each layer. (The advantage of separating the tangent
field entries is, of course, to eliminate inappropriate interactions between the separate curve
segments.)

The remaining step from a covering to a global representation is a specification of which
covering elements belong to the same global curve. (It is usually the case, for example, that
there are multiple curves within a single image.) We accomplish this by a straightforward
exploitation of topological connectivity: graphically, the inital covering elements are all
born with a different "color"; as two covering elements overlap dynamically, they become
the same "color". In the end, "color" propagates along connected components, and the
elements belonging to the covering of the same curve are all the same color, while the covers

corresponding to different curves are different colors.

In conclusion, we believe that dynamic coverings have application to a variety of problems
that must face the transition from local to global representations in a parallel, efficent way.
For example, an extension to surface coverings could work as follows. We' know that it is
possible to extract, from 3D data, an intermediate structure that is the 3D equivalent of the

tangent field (see Sander and Zucker [19891). This structure mainly consists of an estimate

of the tangent plane at each (3D) trace point. Starting from these planes, a generalization
of the model presented in this paper would evolve those local estimates to fit together into a
(smooth) covering of the surface. The covering elements would thus be overlapping surface
patches.
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APPENDIX

A. 1 Dynamics of the deformable curve

Given the potential functional Ut(v), we can define the kinetic energy of the curve.
Following classical mechanics, the kinetic energy functional at each time t is

T'(v) = fjUvtl2ds

where p is the (constant) mass density.

According to the principle of least action, the motion of the deformable curve during the
time interval [to, tI] is described by the functions x(s, t), y(s, t) for which the integral

tj Lt(v)dt
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of the Lagrangian L(v) = T t (v) - Ut(v) is a minimum. It is also known that any extrema of

f j Lt(v)dt must satisfy the Euler-Lagrange equations. Setting f(v) = J(Mlvt 12 _ wIvs 2

"_2 Ivs812 _ UTF(v)), the Euler-Lagrange equations are

a a 02 02 a2

fz - "y-(fzs) - -(fz) + a(f ) + "(fzt )+ " d(fs) = 0

a a 02 02 02 (.1,
fy ( -(f y ) + '2 (fvu) - - (fyt ) " ' (fvst ) = 0

where, for example, fst denotes .f, the derivative with respect to the variable xj.

Equations .1 hold for a conservative system. In order to dissipate the kinetic energy
produced during the motion, an energy dissipation functional can be introduced, such that
the deformable curves reach stable equilibrium positions. Using the Raleigh dissipation
functional Dt(v) - f 'Ylvtl 2 ds, where -y is the (constant) damping density, (.1) becomes

0 0 02 02 02a
+ Osf (fzso)  "9 (fztt)  " 62 (fzst) +oa (_Ivtl2) =0 . 0 02 02 02 0

fy- (fys) - (fyt) + -2(fy8s) + ±2(fytt) + -2(fyst) + " (Iv1 2) = 0.

Letting Fz(v) denote _zUTF(V), we calculate

fX = -jrz(v)

s) = -o(Wi.)as as
02 02

03(~) = --s2(PI-o,)
0
5(fh) = Ptt

02 02
at(fx) = O-(f.) = 0.

2 2

Using identical results for fy, (fy.), '.(fYu) ,' &(fu) , (f) and ) the
Lagrange equations of motion of the deformable curve are

J=. ~ (w +z - .o) + T( -so) = - rzo,)
Pztg + Yz - Ts0 2(2

Pitt + 7yt - !(W1 .) + pus.) = -ry(v).
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A.2 Numerical solution

The solution of System .2 gives the positions, in space and .in time, of the curve t'

during the motion. We now address the numerical approximation to System .2, following
Terzopoulos [1988b].

The space domain Ql is tessellated into N+1 nodes {O.h,2h...,Nh},h = Then, the

solutions to the system are the vectors i t = (x(ih,t))N=o = (z)=, yt = (y(ih,t))!=0€  =

M)= oat each time t. It is possible to express (.2) as the linear system

Ax t = gt Ayt = t.

Assuming temporarily that the curve is closed, two initial configurations (initial conditions)
are needed. Solving for xt , given a time step At, xt and ztt are approximated by

Xt _ Xt-2At

2At

Xt-2At - 2xti-t + z t

ztt = At 2 ,

where backward differences are used, since we can only rely on curve positions at previous
times. This results in the system of N + 1 equations

+At22At ' t

+, -At, ..+-At2 T - _ _ ),t-2Mt (.3)
2 4t2 / At2 2At'

i 0 ,...,N

where /.UTF(V) is evaluated at time t - At.

The right hand sides of Equations .3 only depend on prior configurations, and can be
evaluated at each time step t, as long as two initial configurations (xtO- ,t and at0- 2At) are
given at the initial time to . Setting

= (- ,r t -&At _tAt+ + ^ t-At - (7 T-2At)9i2A 2At 2  2AtJ i=o

and writing
A f(t + -!-)I + K a I + K,

-Ai
2 2At

(.3) reduces to

(al + K)x t =g9
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where the only unknown is the stiffness matrix K determined by the relations between nodes

at each time t. Again using finite differences to approximate the spatial derivatives l(w XS)2

and fa-- 2xss) (see Section .4). we get

a 0(WX + a2 (w2xss)

2(i+ h) "M w2 (i - h) + (i _w(i-

+ i + h+ h 2  h2J

" + h) 2- 2 (i) w(i) I

+ Zi+2h [h4 h)]

in the case of closed curves (i.e. x_ = , X1 = i 9 O, N+2 = zr).

Finally, setting

w2(i +h)

2w2 (i) 2w 2(i + h) wl (i)
b M 0 4h h2

w2 (i - h) 4w(i) +w2(i + h) wl(i - h) w(i)
c 0 + h4  + + h2  +h"2

for i = 1,... N, the stiffness matrix K is the pentadiagonal symmetric matrix

co bo ao aN-1 bN
bo  cl bl al aN
ao bj c2 b2  a2

al b2 C3 b3 a3

aN-4 bN-3 CN-2 bN-2 aN-2

aN-I aN-3 bN-2 CN-1 dN-I

bN aN aN-2 bN-1 CN

Then, A = al + K is also pentadiagonal symmetric and can be solved very efficiently in.

O(N) time and space [Benson and Evans, 1977], by factoring A into triangular and diagonal
matrices.

A .3 Inserting position discontinuities

Up to now, the deformable curve was assumed to be closed. We now relax this assumption
by inserting a discontinuity between node N + 1 and node 0.
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To insert a position discontinuity at s (Y)h between nodes i - 1 and i, the stiffness

matrix K has to be changed to eliminate relations between nodes i - 1 and i. The equations
which relate nodes i - 1 and i are given by the matrix rows i - 2. i - 1, i and i + 1, and are
the following

ai-4xi-4 + bi-3xi-3 + ci-2xi-2 + bi-2xi-1 + ai- 2xi = gi-2

ai-3xi - 3 + bi-2i-2 + ci-lxi-I + bi-lxi + ai-lx+j = gi-1 (4)

ai-2xi-2 + bi-lzi-1 + cixi + bizi+l + aixi+2 = 9i

ai-jxi-j + bixi + ci+lxi+l + bi+lxi+ 2 + ai+lzi+3 = 9i+1.

From (.4), we immediately get bi- 1 = ai-2 = ai- = 0, which implies W2 (i - 1) =

w2(i= w1 (i - 1) = 0. This dictates the 9 entries to change in the matrix, which are

1. ai- 2 = 0

2. ai_ 1 =0

3. i-2= -2w2(i-2h )  wl(-2h)

4. bi_ 1 =- 0

5.2w2(i+h)

6. i- =w,2(i-3h) +w,2(i-2h) +W (i-'3h) wl(i-2h)
6. c0 2 = h + 4 + + 2

7. ci 1  = w-2 h 2

4W2(i+h) Wyi+h h

8. Ci+ = + + +

In our implementation, this is used only once, to relax the condition that the curve must

be a closed one.

A.4 Development of the spatial derivatives

We indicate here how the numerical approximation to spatial derivatives are obtained.
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Centered, backward and forward differences are mixed in order to obtain a symmetric matrix.

z W1(i)xs(i) - wl(i - h)zs(i - h)

Ts h-h (Ix h- h

[wl(i h) + (Z' -i h)- w (i) + [+(i l= i-h I h2 I iPh2 - I h h2 j

a2 w2 (i + h)xzs(i + h) - 2w 2 (i)xss(i) + w2 (i - h)xs,(i - h)
8S2xss) 2z 2

,w2(i + h) [xi+2h - 2zi+h + zi

h2  I h2 J

2,I(i) -_ 2xj + xih]

+ w2( - h)[Xix - 2 i-h + x-2h]h2  I h

xi-2h [w2(i h)] + xi...h [-2W2(i) - 2w2 (i - h)]

+ Xih (ih)+4w2 + w-2 -:)]

+ h4+2

+ [i .2-(i + h)-2WWM
+xi+2h [u;( h) ]

Thus, -(wls) + a- (w2zs) is numerically approximated by

Xi_2h [p€;i - )]

+ X,_ [-2w2(i) _ 2w (i - h) _ w •(i - h)

0A M4  h2  IJ

+- _,2(i +h) +,(i) wj(i - h)+ + wi(i-h)

+ Lh4 M h4  2 h2

+_2W2___+_h 2w2 (i) _ i w(i -h)j

+ zi+2h pW2(+h)]
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